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ABSTRACT

The theories for the determination of the Newtonian gravi-
tation constant (G) and the earth's gravitational constant (GM)
have been examined. Two experiments have been considered for
determining the Newtonian constant, one of which appears to be
capable of improving the accuracy of measurement of G by at
least one order of magnitude. Measurement of GM by gradient
techniques does not, however, appear to yield any improved
accuracy.

Experimental tests have demonstrated that the rotating
gravitational gradient sensor concepi is capable of measuring
static gravitational gradients in the 1 g environment of the earth
and that the sensor designs have the accuracy needed for useful
measurements (0.5 x 10-9 sec-2). A design of a prototype trans-
portable gradiometer system has been completed and a program
for fabrication and test has been established.

A study of sensor applications indicates that these sensors
can aid in airborne gravimetry surveys by improving the guidance
system performance and by obtaining a real time measurement of
local gravity anomalies.




SECTION 1

INTRODUCTION

The following were the three over-all objectives of the re-
search work:

1. Design engineering plans and drawings for a
transportable vertical gradiometer

2, Study the application of terrestrial vertical
gravity gradients for the accurate determination
of the earth's gravitational constant (GM)

8. Investigate experiments for the accurate deter-
mination of the Newtonian gravitational constant (G).

The people who devoted a significant percentage of their time
to the contract are:

Principal Investigator Dr. Robert L. Forward

Sensor Development Engineer Mr, Curtis C. Bell

Analyst ' Mr. David Berman

Electronic Engineer Mr. Larry R. Miller

Application Studies Mr. E. Hose

Designer Mr. Stanley V. Pope

Technician Mr. Donald D. Boswell q
Geophysical Consultant Prof. J.C. Harrison,

U. of Colorado

Newtonian Experiment Consultant Prof. Hermon M, Parker
U. of Virginia
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SECTION 1II

GRADIOMETER DESIGN

A gradiometer capable of measuring vertical gradients of the
earth's gravitational force field has been designed. Experimental
testing has been performed on a breadboard model of the sensor head,
which demonstrated a calibration threshold limit of less than
0.2 x 109 sec-2 (0.2 E.U.). More importantly, the experimental
tests also demonstrated that the rotating gravitational gradient sensor
concept is capable of measuring static gradients in the noisy 1 g en-
vironment of the earth, The magnitude of static gradient signal mea-
sured in these tests was 600 E.U. The noise level was 200 E. U. and
was primarily the result of stray magnetic fields coupling to the central
flexure and electronic noise in the transmitter; both problems have been
corrected in the prototype design. For a detailed discussion of the
static tests, see Section V.

An investigation of internal mechanical noise generation in ro-
tating gravitational gradient sensors has been completed and a Scientif-
ic Report on the work has been submitted (see Appendix A). The re-
sults of the analysis show that the sensor can be operated equally well
on a stiff mount at a low rotation frequency and on a soft mount at a
high rotation frequency. In addition, we found that it is necessary for
three different fabrication errors to be present for internally generated
noise to affect the gravity sensing mode of the sensor. The amount of
noise generated depends upon the amount of rotor unbalance and the
amount of bearing anisoelasticity. This noise affects the sensor in an
amount proportional to the sensor construction errors, Our results in-
dicate that the balancing requirements for 0.5 E,U. in a typical sensor
are 0.02%; these are well within the capabilities of good mechanical
design and fabrication techniques.

A 12-month prototype development program has been proposed
which will result in an assembled vertical gravity gradiometer with
suspension system and electronics capable of sensing vertical gradients
in the low E. U, region, If desired, a continuation of this effort to in-
clude refinements in design should result in a sensor system which is
capable of sensing 0.5 E. U. or better.

The vertical gradiometer design is discussed in Appendix B
and the proposed prototype development program is discussed in detail
in Section VL.




Considerations for gravity gradiometer application have estab- 12
lished the need for predicting gradiometer response to mass distribu-
tions of particular interest. A digital computer program has been
developed to simulate the rotating gravitational mass sensor, and to
map the gradient contours of the gravitational field created by an ar-
bitrary mass distribution (see Appendix C). The analysis in
Appendix C demonstrates the interaction of the gradiometer with sec-
ond and higher order gravitational gradients. The information about
the mass distribution of an object was found to increase with the gradi-
ent order. This treatment gives a basic introduction to gravitational
tensors as well as a mathematical formulation of the gradiometer
model. Computer results are included which demonstrate the gravi-
tational gradient contours associated with some selected mass
distributions.
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SECTION III

DETERMINATION OF THE EARTH'S
GRAVITATIONAL CONSTANT (GM)

The investigation into the feasibility of utilizing vertical
gravity gradients on the ground to determine the earth's gravitation-
al constant (GM) has resulted in an essentially negative finding (see
Appendix D). Despite some initial optimism expressed in Quarterly
Status Report No. 1, the analysis has encountered the difficulty dis-
cussed in the Hughes proposal for this contract, i.e., that gravita-
tional gradients come primarily from nearby objects. An analysis
using a spherical earth would indicate that GM can be separated from
R by measuring the gravitational acceleration g = GM/R2 and its
vertical gradient T" = 2 GM/R3. However, the R measured by g
is related to the radius of the earth, while the R in I' is essential-
ly the average radius of curvature of the earth at the point of mea-
surement, This is only indirectly related to the over-all radius.
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SECTION IV

DETERMINATION OF THE NEWTONIAN
GRAVITATIONAL CONSTANT (G)

Scientific Reports have been written on experiments for deter-
mining the Newtonian gravitational constant G. The first experiment
is a dynamic Cavendish experiment using two rectangular solids, one
of which is rapidly rotating and the other suspended on a resonant
mount, The second experiment uses a mass which oscillates inside
a tunnel bored through a larger mass. The expected accuracies of
the two experiments are compared with the present accuracy of G
and the accuracy expected from the experiment conducted at the
University of Virginia.

According to the NBS Technical News Bulletin, October 1963,
the presently accepted value or the Newtoman gravitational constant
is 6.670 + 0.015 x 10-11m -1 gec” (three standard deviations),
which indicates an accuracy of only one part in 500.

This value for the constant was obtained from the ''time of
swing'' experiment of Heyl.* This experiment consists of two concen-
tric torsion balances similar to those used in the Cavendish apparatus.
One balance is held stationary while the other is excited into a pendu-
lum torsional mode oscillation. When the two balances are aligned in
parallel, the period of swing is less than when they are aligned at right
angles. In the former position, the gravitational attraction between
the two balances adds to the torsional spring restoring force; and in
the latter position, it subtracts from it. The gravitational constant is
obtained from measurement of the difference in periods between the
near and far positions. The periods were on the order of a half houy,
and could be measured to 0.1 sec.

A method of determining G to.higher accuracy currently is
being tested at the University of Virginia (see Appendix E). The experi-
ment described in Appendix E is designed to improve the knowledge of
G to one part in 104, With future versions, accuracies greater than
one part in 103, and possibly one part in 106, should be attainable.
This experiment also consists of two concentric torsional balances.
One balance is free to rotate under the attraction of the second, while
the second is motor-driven and servo-controlled to maintain constant
angular position with respect to the first. Hence, both balances will
rotate through 3600 while a constant torque is being maintained on
the free balance. The angular displacement, after many hours, deter-
mines the gravitational constant.

% . 5 s 5
P.R. Heyl, "A Redetermination of the Constant of Gravitation, ' Bur.

Std. J. Res. 5, 1243-1290 (1930). 7




In trying to push the gravitational constant to higher accuracy,
we ultimately approach the limitation of precision in the determination
of mass separation distances and homogeneity of density within the
masses themselves, Itis these limitations that form the basis of dis-
cussion of the rotating flat plate experiment and the vertically tunneled
sphere experiment,

A, THE ROTATING FLAT PLATE EXPERIMENT

The rotating flat plate experiment utilizes the gravitational inter-
action between two optically flat and parallel rectangular solids, one ro-
tating at constant speed and the other suspended on a resonant mount
(see Appendix F). In Appendix F we have established the experimental
system schematic, which consists of (1) a torsional suspension system
for the resonant plate, (2) a suspension system and drive for the ro-
tating plate, (3) an optical detection system to measure angular deflec-
tion, and (4) a vacuum and external disturbance isolation system for
the entire apparatus. We have also established that the gravitational
interaction between the two plates is a second-order gravitational gradi-
ent and that the dynamic interaction will be at twice the rotation frequency.
The magnitude of this gradient is on the order of 10 E. U,, and depends
only on the density of the plate for fixed dimension ratios. When all
exte. .1al disturbances are eliminated, the accuracy of the experiment is
limited by internal thermal noise. For a plate of typical dimensions
(50 x 5 x 0.5 cm) and a signal-to-noise of 10°, a system time constant
of half a day is required.

B. THE VERTICALLY TUNNELED SPHERE EXPERIMENT

The vertically tunneled sphere experiment is based on a sug-
gestion of Professor J. W. M. DuMond of the California Institute of
Technology. The experiment utilizes the fact that a mass moving freely
through a tunnel bored in a sphere will oscillate about the midpoint of the
tunnel at a period determined by the density of the sphere. To counter-
act the large forces of the earth in the vertical position, it is necessary
to bore two tunnels and measure the net response of two masses sus-
pended from :he level arm of a balance. A measurement of the change
in tl.e period of the balance when the sphere is put in place will then be
proportional to the density of the sphere. Limitations on the accuracy
of the experiment will be in attainable tolerances in manufacture of
the balance, sphere, and tunnels, as well as in detection of extremely
small changes in period. The analysis indicates that inaccuracies in
the manufacture of the experimental apparatus will introduce measure-
ment errors of appreciable magnitude. It does not appear that this ex-
periment, in the configuration analyzed, can significantly improve our
knowledge of the Newtonian gravitational constant at this time (see
Appendix G).
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SECTION V

EXPERIMENTAL WORK

It was realized early in the study program that the cruciform
sensor design developed earlier in a NASA program would not be
suitable for a terrestrial vertical gradiometer because its four-arm,
multiple piezoelectric transducer design made it susceptible to the
1 g acceleration field of the earth through nonlinearities in the trans-
ducers. We have therefore devised a two-arm torsional type sensor
which has many advantages, such as easier balancing and matching of
the mechanical components and a single torsional transducer for
readout. We have analyzed the behavior of this type of sensor, study-
ing various designs of the mechanical configuration and methods of
balancing and matching.

Many elements of the gradiometer design require advances in
the present state of the art, such as the magnetic support system and
microdyne force measuring system; therefore, it was necessary for
the development of the instrument to proceed along experimental as
well as theoretical and design lines. During July through September
1967, a parallel experimental program was conducted to test the feasi-
bility of a breadboard model of the torsional t{ype sensor head. Funding
for this experimental work was a separate general research program
using company-owned equipment and hardware.

A torsional type sensor (Figure 1) was constructed and calibra-
ted by means of our dynamic gravitational gradient generator (see
Figure 2). Sensitivity of the sensor under these conditions was
16 nV/E.U. The measured threshold of the sensor was 0.2 E.U. The
predominant noise sources observed were front end electronic noise
and thermal noise (0.05 E.U.)

The sensor was then tested while rotating, and demonstrated
for the first time an observable response to a static gravitational gra-
dient field. 1'he sensor was subsequently recalibrated with the dynamic |
gravitational gradient generator. The results of this calibration test |
verified that the sensor response was indeed due to gravitational
excitation.
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Fig. 1.
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Fig, 2.

Dynamic gravitational gradient field generator.
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A, STATIC MASS TEST ';

The laboratory test of August 25 consisted of exciting the oper-
ating rotating gravitational gradient sensor by two 80 lb cylindrical
lead test masses; each was at a radial distance of 26 cm from the
center of the rotating gravitational gradient sensor, but on opposite
sides. In this condition the gravitational gradients of the two masses
add.

We define the static gradient excitation (I'y) as the calculated
resonant mode gravitational torque produced by the test masses di-
vided by the sensor moment of inertia, Iy is proportional to the gravi-
tational gradient of the test masses and is given by

r = 3G§A (sec

s R

-2

) | (1)

where G is the gravitational constant, M is the total test mass, and
R 1is the distance between the sensor and each test mass.

The assumptions implied in eq. (1) are that the test masses
lie in the plane of sensor rotation and that R is much larger than the
sensor radius., Actual test conditions introduce errors of less than
1% in the above.

Using the values discussed above,

o . 3(6.67 x 107°)(2 x 80 x 454)

. 5 825 E. U.
(26)

where 1 E, U, = 10-9 sec-z.

When these test masses were in the proximity of the sensor,
the sensor output increased 15 + 5 pV. The sensor scale factor of
the static test k; was, therefore:

. 15 WV

15 £ 5V _
. 5 . - 18 + 6 nV/E, U,

The uncertainty of + 5 uV (200 E, U, ) in this test was primarily due .
to FM transmitter noise.
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B. DYNAMIC CALIBRATION TEST

The dynamic calibration was performed by rotating two test L,
masses under the (nonrotating) sensor. In the static test the sensor i
signal is broadcast through an FM transmitter to the signal analyzing

electronics; in the dynamic test direct cabling is used.

A separate transmitter gain test was therefore performed to
relate the instrumentation variation between the two gravitational
tests. In this gain test the sensor was excited acoustically and out-
put data were obtained for both transmitter instrumentation and

cabled instrumentation.

Results of this test indicate that the transmitter instrumenta-
tion produces 3.1 times the output of the cabled instrumentation for

the same input,

.

The equivalent gravitational excitation (I‘d) in the dynamic

gravitational test is given by

*
ry, = 2 GNP ihéidz 1 +?—§- A +-IT%§ % (sec-z) (2)
where
M = total test mass
d = one-half the separation distance between the
rotating test masses
R® = a®+n%+1°
h = distance between plane of the sensor and plane
of the test masses
1 = sensor radius
A = 14/R%

For this calibration test

M= 2x1212¢g
d = 4cm

h = 7.5 cm

£ = 6.35cm

%
Robert L. Forward and L.. R. Miller, "Generation and detection of
38, 512-518

dynamic gravitational gradient fields, ' J. Appl. Phys.
(1967).

13
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and the equivalent gradient excitation

-8 2
r 3(6.67 x 10 )2 x 1212)(4) [1 + 0, 17] = 65 E.U.

d” [(4)‘2 +(7.5)% + (6. 35)"‘]5/2 i

The sensor output during this test was 340 nV or, related to
the static test by the FM instrumentation gain, (340 x 3.1) = 1050 nV
(equivalent), Therefore, the equivalent sensor scale factor (kd) for
the dynamic test is

_ 1050 nV B
kd = m = 16 nV/E.U.

The close agreement between the static and dynamic scale fac-
tors verifies that the sensor was indeed responding to the gravitational
gradient field of the static test masses.

The high noise level observed in the static tests will be elimi-
nated in the final design by means nf an improved telemetry circuit.
(See Figure 11 in Appendix B.) Additional noise resulting from mag-
netic interactions will be eliminated by replacing the steel flex pivot
with a flexure made of quartz.

¢« & .
4
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

The studies of the experiments to determine the Newtonian
gravitational constant (G) have demonstrated that improved preci-
sion of measurement is achievable. The analysis of the rotating
flat plate experiment indicates that it is potentially capable of im-
proving our knowledge of G by one to two orders of magnitude.
Therefore, it is recommended that this experiment be investigated
in further detail, both analytically and experimentally.

Although determination of the earth's gravitational constant
(GM) does not appear feasible using gravity gradiometer techniques,
the rotating gradiometer can be helpful in the field of airborne
gravimetry as outlined in Appendix H. In addition, experimental
tests have already demonstrated that the rotating gravitational gradi-
ent sensor is capable of measuring static gradients on the earth. It
is therefore recommended that the vertical gradiometer design por-
tion of the program be continued according to the proposed future
program outlined in Section VII.
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SECTION VII

PROPOSED FUTURE PROGRAM

We propose a 12-month experimental prototype development
program for the fabrication and test of a transportable vertical gravi-
ty gradiometer, as outlined below and in Figure 3.

The program will begin with the manufacture of some proto-
type central flexures of quartz and/or beryllium copper. These flex-
ures will be calibrated and tested using the breadboard torsional
sensor arms already fabricated. Magnetic noise will be checked
while running.

The Cambridge Thermionic Corporation has been requested
to submit a quotation on a three-axis suspension system. Prelimi-
nary information has indicated an estimated cost of $40, 000. This
system will be ordered at the beginning of the contract.

Fabrication and assembly will then proceed on the sensor
head vacuum chamber and telemetry, Careful dynamic calibration
tests will be run and full calibration curves will be recorded.

The sensor head will then be mounted in its vacuum chamber
and subjected to resonant torsional vibrational inputs. The quadru-
pole inertias will be adjusted to match both of the support spring-
inertia ratios. This condition is indicated by a minimum response
to torsional noise.

The sensor will then be tested for noise and gradient sensi-
tivity while rotating in a horizontal plane. The data processing
electronics will be manufactured and, upon receipt of the three-axis
magnetic bearing, the entire system will be assembled, calibrated,
and tested while rotating in a vertical plane.

Calibration threshold of the experimental prototype design
using rotating proof masses wil! he less than 0.2 x 10~ sec~?
(this threshold has already been reached in the breadboard model).
The operating threshold of the experimental prototype should easily
be better than 5 x 10-9 sec~2, If desired, a continuation of the 12-
month experimental prototype program to include design refine-
ments based on experience gained in prototype fabrication should
result in a sensor operating threshold approaching the calibration
limit (0.2 x 10-9 sec-2),
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APPENDIX A

INTERNAL MECHANICAL NOISE GENERATION
IN A ROTATING GRAVITY GRADIOMETER

F (Prepared by D. Berman)




SUMMARY

A rotating gravity gradiometer measures the mass of an ob-
ject by detecting its gravitational force gradient. If properly ba-
lanced, the device can demonstrate a high level of accuracy and
sensitivity. Various unbalances in the gradiometer system give
rise to internal mechanical noise. This paper identifies the major
sources of unbalance and establishes the degree of manufacturing
exactness required to control noise generation, The dynamic grad-
iometer is a rotating device and is subject to shaft translations
caused by misalignment of the rotor and the rotating center of mass.
An elliptical shaft translation will be induced by anisoelasticity in
the gradiometer bearings. Such motion generates anomalous exci-
tations by coupling through any further unbalance internal to the
gravity sensitive mechanism. We have found that the internal me-
chanical noise is directly proportional to the product of these three
unbalances. In addition, for operation above shaft resonance the
noise coupling is independent of rotational speed. Below resonance,
noise is proportional to the fourth-power of speed. Near future grad-
iometer application requires a gravitational gradient sensitivity level
of 0.5 EU (~10"'!
and electronic systems, all three balancing requirements will lie be-

tween 0.1% and 0.01%.

g/ft). Using presently available suspension, drive,
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I, INTRODUCTION

We are presently engaged in the design, construction, and
test of a rotating gravity gradiometer for sensitive measurement of
the earth's vertical gradient, These sensors can also be used on
spinning lunar orbiters to measure the mass distribution of the moon,
and on spinning deep space probes to measure the mass of the
asteroids. _

A rotating gradiometer can measure the mass of an object at
a distance by using a rotating system of masses and springs to detect
the gravitational force gradient field of the objéct,[ 1] The dynamic
(or rotating) gradiometer, in its simplest form, consists of one or
more low level accelerometers mounted to a rotating frame with the
sensitive axes perpendicular to the centrifugal force.[ 2] When this
is done, the output of the accelerometers will be found to contain dy-
namic components at multiples of the rotation frequency which are
driven by the various gradients of the field. In particular, the com-
ponents of the nth order gradient, when examined in the rotating
reference frame of a sensor, will be found to have time-varying coef-

3]

For example, if a simple spring-mass is rotated in a static gravitation-

ficients which are at n times the rotational frequency of the sensor,

al field, the gravitational force gradient of the field (second rank gravi-

tational tensor) will induce dynamic forces in the sensor with a fre-

[ 4]

The basic idea behind the operation of these sensors is an old

quency which is twice the rotation frequency of the sensor.

one in electronics — the concept of chopping. This is used extensive-
ly in dc amplifiers, where the low level dc signal is chopped, trans-
formed into an ac signal, and then amplified and measured by phase
sensitive detectors. In the gravitational sensors, the chopping of the
static gravitational field is accomplished by physically rotating the

(5]

sensor so that its response to the gravitational field varies with time.

VT o SN



Because the dynamic gradiometer is a rotating device, it has
certain design problems common to a precision gyro, particularly
noise generation caused by rotating unbalances. Indeed, of the sev-
eraltypes of noise associated with the operation of a rotating gradi-
ometer, internal mechanical noise is potentially the most limiting.
Thermal and external mechanical noise can theoretically be separ-
ated from the gravity signal because it is random and thus phase-
incoherent. Other types of nongravitational noise, such as acoustic
and electromagnetic, can be eliminated by shielding. However, in-
ternal mechanical noise resulting from center of mass misalign-
ments and bearing anisoelasticity is phase-coherent and at the same
frequency as gravitational excitation (2 Q).

Internal mechanical noise is the result of the combination of
the following three unbalances and is generated even if constant angu-
lar speed is maintained:

° Sensor head unbalance: Deviation between the geo-

metric center of the sensor head and its center of
mass

° Rotor unbalance: Deviation between the rotor geo-

metric center and the center of mass of the entire
suspended system

° Bearing unbalance: Circumferential variations in the

stiffness of the bearing-shaft combination (anisoelasticity).

It is well known that when the geometric center and center of
mass of a rotating body do not coincide, the geometric center will de-
scribe a circle in space, The radius of the circle will be defined by
the frequency of rotation relative to the natural frequency of the shaft-
suspension system. However, if there is any bearing unbalance such
that the restoring force is not constant as a function of circumferential
position, the path described will be elliptical rather than circular
(Fig. A,—l)[.l] An elliptic motion can generate excitations inthe rotating
coordinate system of the sensor, which are at the same frequency as
gravitational excitation, Any unbalances in gradiometer fabrication
will allow this nongravitational noise to couple in and distort the gravity

signal.
A-2
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Elliptic motion of the shaft caused

by bearing anisoelasticity.




The amount of coupling produced by the nongravitational forces
on the sensor arms is a function of the sensor unbalance, An ideally
balanced sensor will not respond to such forces.[ 7] The translational
force is introduced to the arm through its geometric center. If its
center of mass does not coincide, then the applied force resolves into
a translational force at the center of mass plus a torsional couple.
Thus, the mechanical noise is also a linear function of the deviation
between the sensor center of geometry and center of mass.

In order to obtain the required accuracy and sensitivity of a
gradiometer, all noise sources must be controlled to within a toler-
able magnitude. The magnitude of the anomalous gravity signal gen-
erated by internal mechanical noise may be described in terms of an
""equivalent'' noise gradient. The equivalent gradient may be calcu-
lated as a function of rotational speed, suspension stiffness, and the
three unbalance amplitudes. Optimum design parameters and their
associated balancing requirements may then be selected to reduce the
equivalent gradient below the gradiometer sensitivity requirement.
For most potential applications this is 0.5 EU, which would allow a

0.02% measurement of the earth's gradient field of 3000 EU,
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IL. SYSTEM DESCRIPTION

The complete gradiometer system is divided into three basic
areas: (1) sensor head (and housing); (2) suspension system, in-
cluding shaft, bearing, and rotor; and (3) motor drive.

The sensor head of the torsional gradiometer, andeTr dewvelop-
ment by HRL, is shown in Fig,.A-2. It consists of two mass quadru-
poles made of brass, which are connected internally by a magneto-
strictive transducer and externally by two flexural pivots whose op-
posite ends are joined to a mechanical bridge between them. The
sensor headis 4 to 5 in. in diameter and 1 in. thick. The cver-
all length of the bridge is approximately 4 in, The dynamic torsional
stress produced by gravitational forces acting on the sensor arms
torques the magnetrostrictive wire and produces a proportional ac
voltage across the coil surrounding the wire. The mechanical bridge
connects to the bearing and associated support system. A housing
surrounding the sensor head assembly will rotate with the sensor for
windage reduction. The housing also provides electrostatic and elec-
tromagnetic shielding for the sensor.

The sensor head, housing, and associated electronics are
mounted on a three-axis magnetic bearing support and drive system
which rotates the sensor smoothly and quietly at its operating speed,
The rotation speed is controlled by a servo loop between a photoelec-
tric pickoff on the rotor and the voltage control on the drive motor
windings. The drive power is kept at a minimum to maintain constant
angular velocity on the rotor., The power requirement of the bearing
and drive motor will be approximately 30 W, This will provide ro-
tation, and a support stiffness greater than 10, 000 lb/in.

In developing a suspension system specifically for a gravity-
gradient sensor, the principal problem is the avoidance of noise.
Magnetic suspension systems are known to operate with less noise

than either air or ball bearings and should compare in noise level only

i i A i,
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Fig. A-2, Torsional gradiometer sensor head. (Housing not shown.)
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with electrostatic suspension. For a gravity-gradient sensor, the
selected bearing must support 5 to 10 lb; this eliminates electro-
static bearings, which are inherently less noisy, because voltage
breakdown in a vacuum system prohibits suspension of such weights.

In a magnetic bearing the shaft does not touch the outer race.
The bearing mechanism consists of a magnetic field rather than
solid, liquid, or gaseous bearing materials, so that full operation
in a vacuum is practicable. Magnetic bearings eliminate mechani-
cal friction and permit high speed operation over a wide temperature
range. Because they do not use lubricants, they are particularly
advantageous in environments which are hostile to lubricants, such
as outer space.

Attachment of the drive mechanism to the shaft can be made
in one of two ways: through a magnetic coupling of the motor, or a
direct attachment of the armature to the shaft. Either of these will
produce a satisfactory frictionless drive.

An assembled gradiometer prototype system is shown in
Fig. A-3. The suspension, drive and housing are indicated; the sensor

head itself cannot be seen inside the housing.
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Fig. A-3. Assembled gradiometer prototype system, show-
ing sensor housing, suspension, and drive,




III.,. MODEL AND COORDINATE SYSTEM

Figure A-4isa schematic representation ofthe assembled gradi-
ometer. A model of the sensor head consists of two rigid arms
mounted perpendicularly on torsional springs. When they are rotated
at constant angular speed, their relative motion responds ideally to
the local gravitational gradient and rejects external accelerations.
Also shown in the figure are the basic mechanical elements associated

with suspension and drive of the gradiometer. A combination of un-

balance in all of these elements gives rise to mechanical noise, as
will be shown,

Figure A-51isthe coordinate systemusedto describe the dynam-
ical behavior of the assembled gradiometer system. The x-y axes
are fixed in space, and neither rotate nor translate. The w-z axes
are attached to the housing, which rotates at constant angular speed
2. The shaft-mounted housing also experiences a translation in the
form of a negative circulation (a circular motion at the same frequency,
but opposite direction of spin)., The sensor head itself vibrates tor-
sionally with respect to the rotating housing. Its displacement mea-
sured in the w-z frame is the angle a.

The sensor head therefore experiences three concurrent mo-

tions: rotation, circulatory translation, and vibration. Two of these

motions are specified — rotation and translation,

The rotation is a constant spin £, In gradiometer operation,

the platform is maintained at constant speed by external drive and
servo-loop control. The translational motion is a constant negative
circulation (-Q). A negative circulation will excite an unbalanced sen-
sor head as if by a local gravitational gradient. Furthermore, any
arbitrary or random motion can always be decomposed into components
containing a negative circulation, Fig. A-6(a)! ' lanthecaseofananiso-
elastic shaft, the motion will be elliptic. As will be shown later, an
elliptic motion is completely described by one positive and one negative

circulation.
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The generation of anomalous gradiometer signals (or noise)
from negative circulation components of translation is now demon-
strated.[g7 Figure A-6(b)and{c) shows:the. separate effects of (f)
and (-) circulation on the sensor head. In the case of positive‘ cir-
culation, the force vector always points from S to N, regardless
of the sensor orientation. The centrifugal force is constant in the
rotating frame; therefore, positive circulation (of ) kas no effect
on sensor arm vibration., The arms merely experience a constant  °
acceleration,

However, the negative circulation component is opposite to
that of the spin, as shown in Fig. A-6(c).. The induced force vector
points sometimes from S to N and sometimes from N to S, de-
pending on sensor orientation. In the sensor-fixed frame, the centri-
fugal force reverses direction twice during one complete cycle. Hence,
a vibrational mode forcing function of frequency 2 is produced,

In ideal operation, the oscillatory displacement a of the sen-
sor head with respect to the rotating housing is a measure of the local
gravitational gradient. However, in the present case, the center of
mass of the torsional sensor head does not coincide with its center of
geometry, We define h as the deviation, We will shortly demon-
strate that the magnitude of the anomalous gravity signal is propor-
‘tional to n* (for a constant circulation).

The amount of negative circulation can be further related to
the magnitude of other unbalances: rotor misalignment coupled with
bearing anisoelasticity. We will separate the effects of these three
unbalances by first treating the sensor head unbalance under appli-
cation of a negative circulation of fixed radius d. We shall there-
after evaluate d in terms of shaft speed, natural frequency, and

rotor and bearing unbalances.

*Thé sensor head actually undergoes a dual vibration of its two
mass quadrupoles (Fig. A-2orA-4), and the gravity signal is mea-
sured by their relative displacement. In the present discussion
of noise, we may assume one quadrupole perfectly balanced.
Otherwise, L represents the relative unbalance between the two
quadrupoles. A
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IVv. EQUATIONS OF MOTION

The equation of motion for the unbalanced vibrating sensor
head, in the rotating frame and under application of negative circula-

tion, is obtained most directly from the Lagrangian:

$(5)- 5. )
Here, T is the total kinetic energy of the vibrating sensor head and
F represents the total forces (torques) applied. In operation, these
forces contain the gravitational coupling and the torsion spring re-
storing and damping forces.

The total kinetic energy consists of translational energy of

the center of mass, plus rotational energy about the center of mass:

T =% iyl 3 @4a) (2)

where M is the mass of the sensor head (half), and I is the moment
of inertia of the sensbr héad about the axis:of vibration. In order to facili-
tate the derivative operations in (1), we first express all variables in
terms of a. The fixed x-y frame coordinates of the center of mass
are related to the rotating-translating coordinate a by straightfor-

ward geometric considerations (see Fig. A-5):

dcos 2t + hcos(Qt + a)

"
n

(3)
y = -dsinQt + hsin(Qt + a)
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with the corresponding velocity components:

-0dsinQt - h(R+a)sin(Qt + a)

» .
"

(4)
-QdcosQt+h(Q +a)cos (2 +a).

<.
"

We may now write T completely in terms of a. Substituting

(4) into (2) yields

T = 3 (1+ Mb)@ + ) +-"4§[93d - 20h (8 + ) cos (20t + u)] :
(5)

The required derivative operations then yield

)
|

(I+Mh%)(@+d)-MQdhcos (20t +a)

@
f.

(I+Mh%)& +MQdh (22 +a)sin (20t + a) (6)

&le
QE
ot
\—/
1)

@
—

MQdh(R+a)sin(2Q¢t+ a).

Q
~0
[}

Substituting these expressions into (1) yields the exact equation of

motion of sensor head vibration in the rotating and translating frame:

2

(I+Mh%) & + @ dhMsin(2Q¢t+ a) = F. (7)
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This describes the dynamic behavior of the gradiometer sensor head
for constant angular speed £, a specified negative circulation d,
and a center of mass misalignment h. No approximations have been
made, and no higher-order effects have been neglected, Indeed, the
results will shortly demonstrate that internal mechanical noise gen-
eration is a third-order unbalance effect. Thus it could not be iden-
tified at all if second and higher-order effects were neglected.
The moment of inertia I of the sensor head (see model,

Fig. A-4) is
I = Ma (8)

where a is the radius, The modified moment of inertia implied by

(7) may be rewritten

! é A
I = Maz(l +5'z> : (9)
a

Because the unbalances to be encountered will be very small (< 1%),
the effect of h in modifying I will be .insignificant.. Hence,

we will neglect the slight change in I caused by the sensor head
unbalance, Furthermore, the angular motion a of sensor head vi-

0 rad. Therefore,

bration iz extremely minute, on the order of 10~
it is a safe approximation to ignpfe the slight phase fluctuation im-
plied in the right-hand side term of (7).

The extremely significant effect of the h-unbalance is dis-
closed by the second term in the left-hand side of (7)., This term
is driving the sensor head at its resonant gravity-sensitive frequency
(2 Q), and will therefore cause an anomalous gradiometer reading.
The effect will be demonstrated bélow.

To demonstrate the noise generating effect «f the h-unbalance,

we need to evaluate the generalized force F. Since a is an angle,

F 1is a torque:




(9 .~
F/M = -Qiaza-—g-azu-SaZI‘sinZQt. (10) ‘

In the above, the terms are, respectively, the sensor head torsional

spring and damping forces, and the dynamic gravitational coupling

force:
Qo = gensor head torsional resonant frequency (29)
Q = sensor head mechanical quality factor (amplification)
I’ = gravitational gradient (second order)*: Gm/R3 for
mass m at distance R
G = gravitational constant.

Substituting (10) into (7) yields (ignoring the slight moment of

inertia and phase deviations, as discussed above) ’
q
Q 2
d e =2 a8 Bafas a8 F Il ok 2R (11) ,
Q o 3 2
: !

where we have divided by Maz. i

Equation (11) dramatizes the influence of the sensor head un- i
balance (h) in producing an anomalous gravity signal, The gravita- '}
tional gradient signal I" at 2 @ is now directly coupled to a me- |
chanical noise signal, which is proportional to both the sensor head
mass unbalance and the magnitude of negative circulation. We can

conveniently define the ''equivalent' gradient Pe

*We are considering only noise in the measurement of the second-order
gravitational gradient. There are really higher frequency components ﬂ
in F which correspond to higher-order gradients. The amplitude of
these terms is much smaller than the second order gradient. Although
these higher frequency terms are not disturbed by elliptical shaft trans-
lation, they would have noise due to nonlinearities. :

A-18
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r, s 0%dh/3a% | (12)
which the gradiometer instrument would incorrectly read as a gravi-
tational field.

The result of (12) is complete in-that, for a given magnitude
of negative circulation d, the required balancing h can be deter-
mined for any operational speed 2. However, d is not an indepen-
dent parameter, but also depends on rotational speed plus other un-

balances. These additional unbalances are external to the sensor .

head, and are found in the gradiometer drive mechanism (see Fig, 4).
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V. DYNAMICS OF SHAFT TRANSLATION

Rotating shaft behavior and the motion induced by rotor/
bearing unbalances have received great attention. In particular, the
motion of an unbalanced shaft rotating on anisoelastic bearings (with

zero damping) has been previously derived[ 6]:

er
X, = > cos Ot T
l-r
X
(13)
2
er
y P A sinQt,
1 ] 2
-T
Yy

In(13), e represents the distance between the center of mass of the
entire suspended shaft and the position of neutral rotor equilibrium;
r_. and r_ are the inverse ratios of rotational speed © to the trans-

X
verse components of the natural frequency of shaft suspension Qn:

TeN= Q/Qx
(14)
r = Q/Q
Yy / y
where we define a mean-square value:
Q% = 0% + . (15)
n x y

The anisoelastic shaft restoring force is shown in Fig. A-4, and the

cocrdinates X, -y, are defined in Fig. A-5.
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The trajectory described by (13) is an ellipse. As discussed
above, this motion contains a negative circulation component. An el-
liptic miotion can be decomposed into the sum of two circular motions:
one positive of large amplitude, and one negative (opposite to the shaft
rotation) whose amplitude is proportional to the unbalance (see Fig.
A-6(a)). The component of negative circulation at 1 £ converts into
2 Q excitations in the rotating coordinate system of the sensor and
can couple into the gravitational gradient excitation through any un-
balances in gradiometer fabrication.

A positive circulation of amplitude p is expressed mathema-

tically by

b, <

cos 2 t
p P

(16)

y psein Qt

P

and the negative circulation of amplitude d by

dcos Qt

»%
n

(17)
-dsinQ t

Yn

If the net of these circulation motions is to produce the elliptical

motion implied by (13), we must have

L2 2
p+d = erx/ (1 -rx)
(18)
2 2
-d = / (l - ) ,
P ery ry

from which we obtain finally
2 2
" r, - ry
d = —
A
X Y

the amplitude of negative circulation.

(19)
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Since the difference between the two transverse components

of natural frequency will be small, we define
Qx/Qy F l-c (20)

where ¢ is the bearing anisoelasticity, or circumferential deviation
in translational stiffness of the bearing plus shaft. Using (14), (15),
and (20), eq. (19) becomes

2 )2
Q/Qn

d = ec (1 _QZ/Q!?;)Z ; (21)

This expression for the amplitude of negative circulation is adequate
to describe the translation of the shaft, so long as we do not allow
the rotational speed © and natural fregquency Qn to become compa-
rable. In practice, this situation would always be avoided as a
matter of routine. We thus consider the two regimes @ < Qn and

Q > Qn and the corresponding solutions

Q2

ee—%, 2 <Q
Q n

d = ¢ (22)

2

een—, Q > Q
2 n
)

\ n

We see from {22) that d always diminishes as the square of the fre-
quency ratio, in either direction from the resonant condition., Thus,
for operation above resonance, we would like to lower the resonant
frequency as much as possible (soft-mount); below resonance, the

bearings should be very stiff.
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VI. EQUIVALENT GRADIENT

We are now in the position to return to (12) and express the
equivalent gradient noise 1"e completely in terms of gradiometer
system unbalances: sensor head and rotor mass unbalance, and

bearing anisoelasticity, Substituting (22) into (12) yields

(

W] —
m
=
-]
Nl
9
\
QD

r =i ¢ (23)

[ P
=
]
<H
S
(%)
=
(3]
=
M
=
=]

\

We have dropped the factor of az, and will henceforth interpret both
h and e as a fraction of sensor head radius. The mechanical noise
is thus directly proportional to the product of the three unbalances,.
For the above resonance case (Q > Qn), noise is independent of ro-
tational speed and diminishes as the square of natural frequency.
Below resonance (Q < Qn), noise is an inverse function of natural
frequency, and is also proportional to the fourth power of rotational
speed.

To demonstrate the significance of these frequency regimes,
we have plotted the complete equation (23) in Fig, A-7. For convehience,
we have taken all of the unbalances to be identically equal to 0.01%

(a lower limit on practical balancing capabilities). Hence, e = h =

€ = 0.0001. Equivalent gradient is plotted versus rotational speed,
with natural frequency of suspension as a parameter, The peaks

have been illustrated-only to indicate to resonant condition. The
actual shape of these peaks will depend on the damping characteristics

of the suspension system (which are neglected in this analysis).
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For practical near future gradiometer applications, sensitiv-
ities of 0.5 EU will be required. In addition, a practical lower limit
on operating frequency (because of electronic limitations) is 15 Hz.
Using these values, we can obtain from Fig. A-7 the requirédnatural
frequency of shaft suspension for control of noise to below 0.5 EU,
There are two answers: Qn = b Hz and 30 Hz. In other words,
natural frequencies less than 10 Hz below rotation or greater than
15 Hz above rotation are satisfactory, In a practical situation, stiff
support is more easily attainable., In fact, it is quite difficult to con-
struct drive mechanismis of such low suspension stiffness as 5 Hz
which would be practical for gradiometer application. Therefore, we
may .tonclude that when possible, rotating gradiomeéters should
be operated below the natural frequency of shaft suspension (R <Qn).

In Fig. A-7 alluhhalances were assumed to beidentically equal
to 0.01%. Itis of further interest to explore the actual balancing
requirements for an optimum choice of rotational speed and natural
frequency, We have seen in Fig, #-7 thatthe'desirable mode of oper-
ationis Q< Qn; therefore, the best condition is for the inequality
to be maximized. The smallest practical value of rotational speed
is € = 15 Hz, while the largest practical value for suspension fre-
quency is Qn = 150 Hz, Using these values, and I"e = 0.5 EU, eq.
(23) is plotted in Fig, A-8. 'The sensor headbalance requirement is
plotted versus maximum tolerable rotor unbalance; bearing aniso-
elasticity is the parameter. In Fig, A-8,"thetrade-off relationship
among the various balancing requirements is demonstrated. For ex-
ample, if bearing anisoelasticity of 0.001% could be achieved, the
mass balancing requirements of both sensor head and rotor would be
only 0.1%. On the other hand, if all unbalances are assumed identi-
cal, the mutual requirement is 0.02% as shown. This may be rea-
lized as a relaxation of the 0.01% mutual requirement corresponding

to the suspension natural frequency of 30 Hz (Fig. A-T).
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To explore further the effect of natural frequency, we have
plotted in Fig. A-9the equivalent gradient I"e with mutua! unbalance
and natural frequency as variables. The rotational spe=d is con-~
stant at 15 Hz, while the unbalance is varied from 0,001% to
1%. The 0.5 EU requirement is shown, along with the correspond-
ing 0.02% result at Qn = 150 Hz, From Fig. Ar9, we observethat
an order of magnitude increase in shaft suspension stiffness would
be required to relax the 0,02% requirement to 0.,1%. This is not

feasible and balancing will need to be somewhat more critical than

0.1%.
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VII. SUMMARY

The foregoing results demonstrate that the internal mechan-
ical noise generation in a rotating gravity gradiometer is directly
proportional to the product of three system unbalances, In addi-
tion, for operation above shaft resonance, the noise is independent
of rotational speed. Below resonance, noise is heavily dependent
on rotational speed, being proportional to the fourth-power.

We have established. the balancing values required to con-
trol the anomalous instrument excitations to below 0.5 EU, Keep-
ing within the practical ranges of rotational speed and shaft sus-
pension, it is concluded that balancing to between 0.1% and 0. 01%
will be required. For the nominal values of 15 Hz rotational speed,
and 150 Hz suspension frequency, the mutual requirement on all

three sources of unbalance is 0,02%.
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SUMMARY

A rotating gravitational gradient sensor system has been
designed which is capable of sensing the vertical gravitational
gradient of the earth while operating on the earth's surface. The
system consists of a torsional type sensor head, a magnetic sup-
port system, and associated telemetry and electronics. This re-
port describes the considerations which went into the design
choices, illustrates design features, and derives the magnitude
of the noise errors present in the sensor design. Noise source
analysis indicates an estimated error of 0.6 x 10~ sec™¢ rms
(0.6 E.U.) for all noise sources for this initial prototype design.
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SECTION 1

INTRODUCTION

During the past year we have been engaged in work under Air
Force Cambridge Research Laboratories Contract AF 19(628)-6134,
"Research Toward Feasibility of an Instrument for Measuring Vertical
Gradients of Gravity.'" We undertook the development of design ~n-
gineering plans and drawings for a transportable vertical gravity gradi-
ometer; it was desired that the instrument have the capability of attain-
ing an ultimate accuracy and sensitivity of 0.5 E.U. (Eotvos unit -
10-9 sec~2),

It was realized early in the study program that the cruciform
design developed earlier in a NASA program would not be suitable for
a terrestrial vertical gradiometer because its four arm, multiple
piezoelectric transducer design made it susceptible tc the 1 g
acceleration field of the earth through nonlinearities in the transducers.
We have therefore devised a two-arm torsional type sensor which has
many advantages, such as easier balancing and matching of the mechan-
ical components and a single torsional transducer for readout.

We have analyzed the behavior of this type of sensor, studying
various designs of the mechanical configuration and methods of balanc-
ing and matching. We have constructed and operated breadboard models
of these sensors which have detected the gravitational fields of nearby
stationary masses, thus proving the feasibility of the concept, and have
built and operated dynamic gravitational field calibration setups which
have experimentally determined the threshold sensitivity.

Because many factors of the gradiometer design require ad-
vancement of the ''state-of-the-art' (e.g., magnetic support system
and microdyne force measuring system), the development of the instru-
ment must necessarily proceed along experimental as well as theoreti-
cal and design lines, ‘

Our current laboratory testing is directed toward measuring
static gradients and comparing sensor response with the expected re-
sponse based on sensor calibration tests.

Our laboratory test of August 25 demonstrated for the first
time the response of our rotating gravitational gradient sensor to a
static gravitational gradient field. To verify that the sensor response
is a result of gravitational excitation, the sensor was subsequently cali-
brated with the dynamic gravitational gradient generator. The results
of this calibration test verified that the sensor was indeed responding
to gravitational gradient excitation.
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The static gradient test consisted of exciting an operating ro-
tating gravitational gradient sensor by two 80 lb cylindrical lead . I
test masses, each at a radial distance of 26 cm from the center of ‘
the rotating gravitational gradient sensor but on opposite sides. In 4
this condition the gravitational gradients of the two masses add.

Sensor scale factor as determined by the static gradient test
was 18 + 6 nV/E, U., while the dynamic calibration test indicated
a scale factor of 16 nV/E.U. The noise level in the static tests was
approximately 200 E.U., primarily as a result of FM transmitter
noise. The transmitter has since been redesigned, and the new de-
sign is described in this report,

In line with the above discussion, the design of the vertical
gradiometer is sufficiently flexible to accommodate modifications
which may prove necessary as a result of later experimental work.




SECTION II

BASIC CONCEPT

The basic concept of the rotating gravitational gradient sensor
is as follows. If a system of proof masses is rotated in the static
gravitational field of an object, the gravitational force gradient of
this field will induce dynamic forces on the proof masses with a fre-
quency which is twice the rotation frequency of the system, while in-
ertial effects caused by accelerations of the proof mass mounting
structure will induce forces with a frequency at the rotational fre-
quency. The strength and direction of the gravitational force gradient
can be determined independently of the inertial forces by measuring
the amplitude and phase of the vibrations induced in these proof masses
at the doubled frequency. Analysis shows that the sensing of the gravi-
tational gradient will still occur if the proof mass system is in free fall,

More specifically, the proof mass system used is a system of
masses coupled together with springs in a geometry which becomes a
rotating differential accelerometer.

Because of the tensoral nature of the gravitational gradient
field, there are several different sensor geometries which could be
used (see Figure B-1). These geometries fall intotwo basic types.

° Radial sensors — sensors which sense differential
forces toward and away from the sensor axis of ro-
tation (Figure B-1(a), (b)).

° Tangential sensors — sensors which sense differ-
ential forces in directions perpendicular to the
sensor radius (Figure B-1(c), (d)).

The basic advantage of the tangential type of sensor over the
radial is that the centrifugal reactions of the sensor masses are per-
pendicular to the vibrational direction of the spring, reducing any
angular velocity-resonant frequency interactions of the sensor.

The pattern of tangential forces whick occur at twice the rota-
tional frequency is shown in Figure B-2 and is given by the following
equations

e e S At e S e st i i




Fig. B-1.

(a)

Possible sensor configurations.

(b)
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Fig. B-2. Phase of 2 w tangential vibrations.




BA=NE S mr sin 2 wt (1)
1 3 2 R3

) .3 GM .
FZ = F4 = +7 TR mr sin 2 wt (2)

the positive forces are defined to cause positive (ccw) rotation and

sensor end mass

m =

w = sensor rotation speed

r = sensor radius

2GM  _ : : 3 A
~— = radial gradient of the gravitational force field.
- R

) These forces are extremely small. For an input of GM/R3 =
10"'9 sec'z, a sensor end mass of 200 % and sensor radius of 2.5 in,
(6.35 cm), these forces are 1.92 x 107° dyn each. The equivalent
nonresonant angular displacement of the sensor arm in a sensor ro-
tating at 15 cps is = 10-13 rad. If the sensor is operated at reso-
nance, these displacements of course will be increased by.a factor of
Q over the nonresonant response.

Tangential sensors may be further subdivided into _‘two types,
depending on the method of coupling between the end masses. The
first type is the tuning fork, or cruciform, type of sensor shown in

Figure B-3.

The coupling between the masses occurs in the connecting
radii between the arms. The mode of vibration produced by the gravi-
tational gradient forces is shown in Figure B-4(a). Figures B-4(b)and
B-4(c) showtwo othermodes of vibration which can occur in this type

of design,

Although this type of sensor can be used for measuring gravi-
tational gradients in free fall and for measuring horizontal gradients
on the earth, it is not satisfactory for measuring vertical earth gradi-
ents. When the cruciform sensor is operated vertically, the vertical
reactions of the supports generate forces of 8 x 10° dyn in the sensor
translational mode at the frequency of rotation. Although response to
this force thearetically could be filtered out, since it is not at the
sensor gravitational response frequency, nonlinearities in the sensor

B-6




Cruciform sensor.

Fig. B-3.




(a) gradient sensing (b) rotational sensing
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(c) translational sensing

Fig. B-4. Sensor vibrational modes.
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pickoff and electronics will generate harmonics which are at the sen-
sor response frequency. The nonlinearity of the electronics therefore
would have to be held to approximately 1 part in 1011 to hold this
noise smaller than a gradient signal of GM/R3 = 109 sec-2 (1 E. U.).
This linearity requirement cannot be achieved with present electronic
techniques.

The second type of tangential sensor, the torsionally resonant
gradient sensor, is shown schematically in Figure B-5. Itconsists of
two rigid mass quadrupoles oriented perpendicular to each other and
connected at their centers with a torsionally flexible spring. When
the sensor is rotated in the gravitational field of a test mass, the
forces which occur between the quadrupole masses and the test mass
produce torques which deflect une quadrupole with respect to the other,
with restraint applied by the torsion spring.

The major advantages of this type of sensor over the cruciform
type are

ls Use of a flexural member between the rigid mass
quadrupoles, which is torsionally flexible but
laterally rigid, assures a single mode of vibration
which will be excited by gravitational gradients.

2. Use of a single flexural member coupling the
quadrupoles allows the use of a single transducer
and eliminates the need for matching of transducer
elements.

3. A centrally located flexure with strain transducer
located on the flexure itself provides the maximum
strain available and consequently yields the maxi-
mum signal size.

This sensor will be made of low conductivity materials, with the cen-
tral flexure made from fused quartz.

The analysis of the gravitationally induced forces is essential-
ly the same as that for the forces produced in the cruciform type sen-
sor. The sensor masses see gravitationally induced forces at fre-
quencies which are 1, 2, 3, ... etc., times the rotation frequency
Q; the magnitude of the nth harmonic is proportional to the nth
order gradient of the gravitational potential field.

Calculation of the torques on each of the quadrupoles results
in cancellation of the fundamental rotation frequency and the third
harmonic responses; the second harmonic torques T are found to be
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T = ———— s8in 2Qt (3)

where (ZGM/R3) is the radial gradient of the gravitational force
field, m is the end mass of the quadrupole, and r is the half-length
of the quadrupole. Furthermore, the angular acceleration field pro-
duced is given by

2
a = % = 3Gl;1 mrz sin 2Qt = %@3- sin 2Qt (4)
R™ 2mr R
where I (the quadrupole inertia) = Zmrz. ‘If the sensor is made

torsionally resonant at 22, the angular detlection of the quadrupcle
from its neutral position is given by

aQ IGMQ

g = =
(22)%  8rRp?

sin 20t (5)

where Q is the quality factor of the sensor head and associated
electronics,

The angle 0 is extremely small. Surface gradients produced
by the earth (3000 x 10-9 sec~2) will produce angular responses of
= 5 x 10-8 rad in typical torsional sensor deslgéxs (Q = 3n0,Q = 80.6
rad/sec), while useful threshold signals of 10-7 sec-2 produce angular
responses of = 10-11 rad.

It is now necessary to transduce this mechanical motion into
an electrical signal. Various types of signal transducers were con-
sidered in detail; among these were

1% Piezoelectric strain transducers
2. Magnetostrictive transducers
P Capacitive transducers.

It was finally decided to continue the use of piezoelectric strain trans-
ducers (which were used in the cruciform sensors).
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This is accomplished by using a flexural pivot as the torsional
spring and affixing the strain transducer to one of the flexural spring
leaves. An experimental model of this type of torsional sensor is
shown in Figure B-6.

The voltage output from a piezoelectric transducer affixed to
a flexural pivot is easily calculated from basic geometric considerations.

Consider one leaf of a flexural pivot which is being torqued
through a total angle 28, (see Figure B-7). Theleafhasalength A\
and a thickness 2 c. When the leaf is fully flexed, it approximates
an arc segment of a circle with a radius of curvature p (provided
8, is very small). If we consider the centerline of the leaf as a
neutral section, its length remains N and is unstressed. However,
the length of the top surface of the leaf is now ZOO(p + c) and the ten-
sile strain at this surface is

ZQO(p +c)- Zgop ZQOC
€ = x = N (6)

From (5), however,

e (7)
n

R w

where the resonant frequency w, = 282; therefore,

3GMQc

S ———— (8)
)\R3w2

However, the gauge factor of the transducer is ¢ V/unit strain,
Therefore, the voltage output of the sensor is

3Qco
vV = 5 A GI\;I V/gauge (9)
)\wn R

where (GM/R3) is the gravitational force field gradient,

B-12
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Fig. B-6. Torsionally resonant sensor experimental model.
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The signal-to-noise energy ratio in a torsionally resonant
gradient sensor is given by

IwAGZ

S/N = —Z"—k%- ; (10)

here kT is the thermal energy in the torsionally resonant mode and 4
I is the total sensor head inertia. However, 00 has been established
as

9% . (11)
R

©

i
| w
.'5€NIO

Combining (10) and (11) and solving for (GM/R3), therefore, we ob-
tain

(12)

oM _ 2 /N2 <2k’r>1/2"

R3 3 Q I
2 2
Q = (-rwn/Z) and I = 4mr® = mf°, and therefore
oM 4 (s/N)/2 [T\ V2
o3 - 3 T4 m ! S
R
here Tt is the system integration time, { is the center-to-center *

length of the quadrupole, m is a s1ng1e end mass of the quadrupole,
and (GM/R ) is the minimum gradient which can be detected at the
specified signal-to-noise ratio.

For the proposed torsional sensor m=200g, £ = 12,7 cm,
and if we assume T = 100 sec, S/N = 1, and kT = 4x 10721 5 -
4x10°1 ergs, the threshold thermal noise gradient will be

GM _ 5,33x 107! sec™® = 0.05 E., U. (14)

This threshold can of course be improved by the use uf longer
integration times.
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SECTION III

TORSIONALLY RESONANT GRADIENT SENSOR DESIGN

A, SYSTEM DISCUSSION

A block diagram of the complete sensor system is shown in
FigureB-8., T.c¢ zy.‘zmoperatesinthe following manner.

The sensor head responds to the gradient of the gravitational
force field through which it rotates. This response ccusists of mi-
nute torsional oscillations between the mass quadrupoles at twice the
sensor head rotation frequency. These oscillations are detected
through piezoelectric strain transducers affixed to the bending por-
tion of the supporting flexure. The transducer signal is amplified
through the low-noise preamplifier and is then used to drive the FM
transmitter.

All of the above items rotate with the sensor head in an evac-
uated package supported by means of a separate three-axis magnetic
suspension system.

The sensor head package is rotated at exactly one-half its
resonant frequency by means ot an asynchronous motor drive and
servo system controlled by a precision reference oscillator. Sensor
speed is monitored by a photoelectric pickoff and compared with the
oscillator; drive oscillator voltages are then adjusted to maintain
proper sensor speed.

The speed pickoff signal is also used as a frequency and
phase reference for the sensor output signal which has been demodu-
lated in the receiver and fed into the phase sensitive detector. Here
the signal is filtered, matched against the reference voltage for fre-
quency and phase, and time averaged over any specifically chosen
time constant, A meter reads the voltage at the operating frequency,
at any phase angle, and over any chosen integration time.

The signal amplitude read on the meter indicates the size of
the gradient, while signal phase with respect to the speed reference
indicates the direction of the gradient i1nomaly.
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Cambridge Thermionic Corporation, a company specializing in com-

SRATHESIAT

DETAILED DISCUSSION OF DESIGN

Mechanical

a. Sensor Head Assembly

The sensor head assembly is shown in Figure B-9. It
consists -of a central quartz flexure stack which supports two pairs of
seismic masses. This central subassembly is in turn supported by
two additional matched flexures to a solid supporting structure made
up of four posts and two endplates, The central subassembly is non-
metallic, to prevent interaction with magnetic gradient fields. The
seismic masses zre manufactured from a suspension of tungsten in
plastic, maintaining the high density required for low thermal noise
(see eq. (13)) and the high electrical resistance needed to eliminate
eddy-current noise.

One or more barium titanate strain transducers are affixed
to the flexing members of the central support. Torsional vibration
between the two sets of masses therefore produce tensile and compres-
sive strains in the transducers, and voltages are developed across the
transducers. These voltages are then fed into the preamplifier.

b. Support and Drive System

The assembled mechanical system is shown in Fig. B-10.
Here the sensor head assembly has been mounted in a vacuum chamber,
The resonant circuit, preamplifier, and FM transmitter are also in
this chamber but have been omitted in the drawing for clarity, The
chamber is attached to a shaft supported radially by two soft iron pole-
pieces which are magnetically centered by the radial positioning stators.
In addition, the longitudinal position of the assembly is sensed by means
of photocells No. 1 and No. 2, and servo-adjusted magnetically by the
longitudinil positioning stator. The sensor rotation speed is detected
by means of the speed monitoring photocell, and maintained by correc-
tion torques from the drive motor stator. The entire sensor system
shown is inside a second vacuum chamber to eliminate windage on the
rotor. The rotor and shaft assembly is dynamically balanced while
supported in its own suspension to 0.000005 in. center of mass runout.
Bearing elasticity is held constant in the radial directions to within 0. 1%.

PR O e

The magnetic support system will be subcontracted to the

mércial magnetic support systems.
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Fig. B-9. Torsional sensor head assembly.
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Oe Electronics

a. Preamplifier- Transmitter

The transducer signal is preamplified, and trans-
mitted from the rotating sensor head to the stationary receiving equip-
ment by means of the circuit shown in Figure B-11. This transmitter
has an input impedance of 22 MQ and a front end noise of 30 nV(rms)
when the data are integrated over a 100 sec time constant.

In our experimental dynamic gradient calibration tests the
strain gauge signal is fed directly into the Princeton Applied Re-
search Lock-In Amplifier where the noise level is less than 4 nV,
The primary reason for this low noise figure is that this preamplifier
is tube type rather than transistorized. Itis estimated that additional
design work on the preamplifier-transmitter should reduce the noise
to less than 8 nV (0.4 E, U. equivalent).

b. Receiver

The FM receiver circuit is shown in Figure B-12. It
consists of a tuned antenna and standard frequency modulation recep-
tion techniques with four-stage i.f. amplification and battery power
for low noise operation,

c-. Signal Processing

The demodulated telemetry signal is then fed into a
phase sensitive detection system such as the Princeton Applied Re-
search Lock-in Amplifier Model HR-8. The amplitude and phase of
the desired frequency component read by the lock-in amplifier are
proportional to the magnitude and direction, respectively, of the gravi-
tational field gradient.

d. Frequency Reference

A General Radio Frequency Synthesizer, Type 1162,
is used as a frequency reference for the asynchronous drive system,

e. Asynchronous Drive System

The asynchronous drive system of Figure B-13isused
to rotate the sensor at a precise angular velocity without introducing
coherent electrical noise. This system compares the rotation speed
of the sensor with the reference frequency and maintains the proper
speed through a heavily damped servo control on the motor drive
input power (see block diagram, Figure B-14).

B-22
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Fig. B-12. Telemetry receiver.
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SECTION IV

NOISE SOURCES

Our tests with rotating and nonrotating sensors have revealed
a number of noise sources, which have been investigated, They are

° Internal mechanical noise generation resulting from
fabrication errors

o Mechanical vibrations applied to the sensor mount
which are generated by drive motors, air turbulence,
and acoustic and vibrational sources external to the
sensor and drive

™ Differential forces applied directly to the sensor
head which arise from coupling of the sensor arms to
acoustic noise, turbulence in the residual air of the
vacuum chamber, magnetic eddy current forces, and
light pressure

] Pickup in the transducer leads and sensor electronics
from electromagnetic coupling to stray electrostatic
and maunetostatic fields, and to ac induction fields
from the bearings and drive motors

o Thermal noise,

A. INTERNAL MECHANICAL NOISE

Internal mechanical noise is potentially the most limiting of the
several types of noise associated with the operation of a rotating gravi-
tational mass sensor, Thermal and external mechanical noise can
theoretically be separated from the gravity signal because it is random
and thus phase-incoherent. Other types of nongravitational noise, such
as acoustic and electromagnetic, can be eliminated by shielding. How-
ever, internal mechanical noise resulting from center of mass mis-
alignments in the sensor and bearings is phase-coherent and at the fre-
quency of sensor gravitational response (2 Q). '



Figure B-15is a schematic representation of the rotating torsion- 0
al gravitational mass sensor and its associated spin mechanism. The ,
principal construction involves two rigid arms mounted perpendicular
on torsional springs. In operation, they are rotated at constant angu-
lar speed, and the relative motion responds ideally to the local gravi-
tational gradient and rejects external accelerations. Also shown in
the figure are the basic mechanical elements associated with rotation
of the mass sensor. A combination of unbalance in these elements
gives rise to internal mechanical noise, i

poopeo N »

There are two types of internal mechanical noise, One type
is a result of deviations in rotational frequency, and is coupled into
the sensor response through mismatching in the resonant frequencies
of the two support torsional springs. This noise is reduced to accept-
able levels in two ways:

1w The high inertia of the sensor head and heavy damping
of the asynchronous drive maintain a 2Q input torque
variation of less than 0.0l dyn-cm.

¢
e ¢

2. The mass quadrupole inertias are matched to their
individual support springs so that any remaining torque
variations produce the same deflections in each of the
sensor arms. Matching can be held within 0.01%. -
Therefore, the total residual torsional noise is
Tres = 0.0l x 10-4 = 10-6 dyn-cm and the equiva-
lent grad1ent 51gna1 produced ba/ this torque r = res/I =
10° /200(40 3) = 0.124 x10"7 sec~

The other type of internal mechanical noise is generated even
if constant angular speed of the housing is maintained. This is the re-
sult of the combination of the following three unbalances,

° Sensor unbalance h — Relative deviation between the
geometric center of the sensor arm and its center of !
mass (percent of arm length)

L Rotor unbalance e — Deviation between the rotor ‘
geometric center and the center of mass of the spring '
(percent of arm length)

° Bearing unbalance ¢ — Circumferential variations in
the stiffness of the bearing-shaft combination (percent).

It is well known that when the geometric center and the center
of mass of a rotating body do not coincide, the geometric center will *
describe a circle in space. The radius of the circle will be defined by
the frequency of rotation relative to the natural frequency of the shaft-
suspension system. However, if there is any bearing stiffness unbalance

B-28




Figure B-15isaschematic representation of the rotating torsion- .
al gravitational mass sensor and its associated spin mechanism., The .
principal construction involves two rigid arms mounted perpendicular
on torsional springs. In operation, they are rotated at constant angu-
lar speed, and the relative motion responds ideally to the local gravi-
tational gradient and rejects external accelerations. Also shown in 4
the figure are the basic mechanical elements associated with rotation
of the mass sensor. A combination of unbalance in hese elements
gives rise to internal mechanical noise.
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There are two types of internal mechanical noise. One type
is a result of deviations in rotational frequency, and is coupled into
the sensor response through mismatching in the resonant frequencies
of the two support torsional springs. This noise is reduced to accept-
able levels in two ways:
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l. The high inertia of the sensor head and heavy damping
of the asynchronous drive maintain a 2Q input torque
variation of less than 0.0l dyn-cm.
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2, The mass quadrupole inertias are matched to their
individual support springs so that any remaining torque
variations produce the same deflections in each of the
sensor arms. Matching can be held within 0.01%. -
Therefore, the total residual torsional noise is
Tyes = 0.0l x 104 = 1076 dyn-cm and the equiva-
lent gradlent s1gna1 produced b(}l this torque = res/I =
10° /200(40 3) = 0.124x 1077 sec~ ¢
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The other type of internal mechanical noise is generated even
if constant angular speed of the housing is maintained. This is the re-
sult of the combination of the following three unbalances,

[ Sensor unbalance h — Relative deviation between the
geometric center of the sensor arm and its center of
mass (percent of arm length)

s e i S AR,

® Rotor unbalance e — Deviation between the rotor P
geometric center and the center of mass of the spring
(percent of arm length)

° Bearing unbalance € — Circumferential variations in
the stiffness of the bearing-shaft combination (percent).

It is well known that when the geometric center and the center
of mass of a rotating body do not coincide, the geometric center will
describe a circle in space. The radius of the circle will be defined by
the frequency of rotation relative to the natural frequency of the shaft-
suspension system. However, ii there is any bearing stiffness unbalance
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Fig. B-15. Schematic representation of rotating (torsional)
gravity sensor and associated spin mechanism.
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such that the restoring {orce is not constant as a function of circum- J
ferential position, the path described will be elliptic rather than circu-
lar. An elliptic motion can be decomposed into the sum of two circu-
lar motions: one positive and of large amplitude, and one negative
(opposite to the shaft rotation) whose amplitude is proportional to the
stiffness unbalance (see Figure B-16(a)).

The component of negative circulation at 1 Q converts into
2 Q excitations in the rotating coordinate system of the sensor {Figure
R.li{c))and can coupleinto the graovitatioralgradient excitation through
the sensor fabrication errors h and e.

The amount of coupling produced by the negative circulation
forces on the sensor arms is a function of the sensor unbalance. An
ideally balanced sensor will not respond to such forces. The transla-
tional force is introduced to the arm through its geometric center. If
the centers of mass do not coincide, the applied force resolves into a
translational force at the center of mass plus a torsional couple. Thus
the equivalent gradient noise I, is also a linear function of the devia-
tion between the sensor center of geometry and center of mass. The
equation for the equivalent gradient noise Iy resulting from sensor
and rotor construction errors has been derived as

1 ehe QZ, Q> Q;
3 n n
Ey = (15)

2
che QZ _S:Z) , 2 <Q . i
SZn n }

W[+

We see that the internal mechanical noise generation in a ro- |
tating gravity sensor is directly proportional to the product of the
three unbalances. In addition, for the case of Q_ < £, the noise
is independent of rotational speed and proportionai1 to the square of the
suspension natural frequency. However, such low frequencies are
difficult to achieve in practice. The second case (2, > Q) is more
applicable to our discussion. Here, the noise is a function of rotation-
al speed, and attenuates by the ratio (Q/Qn)z.

Therefore, by maintaining low rotational speed (15 Hz), and
at the same time providing a high suspension stiffness, we may achieve
very reasonable balancing specifications. The magnetic bearing manu-
- facturer has indicated that a suspension natural frequency value as
high as 150 Hz is easily attainable. Using this value, eq. (15) is
plotted in Figure B-17 forthecaseof Q_ > Q (and for a bearing aniso-
elasticity of 0.01%). n
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The ultimate design goal for this noise source is 0.3 E, U,
’ The balancing requirement dictated by this sensitivity goal is shown
in Figure B-17as 0.03% for each of the three errors (h, e, and ¢)
in the system.

B. EXTERNAL VIBRATIONS

It is known from previous experience that the coupling of ex-
ternal acoustic noise to the sensor head will be negligible even at
the very low signal levels (2 nV) attained during gravitational cali-
bration experiments, provided that the sensor is operated in a moder-
ate vacuum (0.010 Torr). Therefore, it does not appear to be neces-
sary to strive for ultrahigh vacuum capabilities in our bearing and
chamber designs. However, this vacuum level is not low enough to
prevent differential excitation of the sensor when it is rotated inside
a stationary vacuum chamber, as outlined in Section IV-C,.

Other mechanical vibrations from the operational environment
of the gradiometer system will depend on the particular application,
In laboratory operation, no problem has been encountered. In air-
borne application, for example, vibration isolation techniques must
be employed.

Gr DIFFERENTIAL FORCES !

Eddy current forces can be generated in the sensor itself only
by the motiorn of conductive arms through & static magnetic field. The
eddy current force F on a conductor of characteristic dimension £
moving at a velocity v through a static magnetic field B is given by

| F = B4%v/R (16)

where .R is the resistance of the path through the conductor. This
resistance is difficult to calculate accurately; however, if we assume
that the end mass of the sensor has a resistance path of a few centi-
meters and use the resistivity of aluminum, whichis 3 x 10-6 cm,
the path resistance can be estimated at about 3 x 107° Q. With a
stray magnetic field of 5 G and a sensor arm velocity of about
2m/sec at 50 rps, the calculated eddy current force is about 30 dyn,
which is many orders of magnitude higher than the calculated gravi-

. tational force level of about 0.6 x 10-3 dyn. This calculated force
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level is a static force; its predominant effect on the sensor is to ap-
ply a retarding torque rather than generating noise. However, any
asymmetries in the magnetic field would produce dynamically vary-
ing forces in the sensor arms at the rotation frequency and its
harmonics.

For this reason, the present sensor design consists of non-
conductive materials, such as quartz, etc.; such methods eliminate
eddy current forces.

It has been demonstrated experimentally that the sensor re-
sponds to light pressure when a beam is directed at one side of the
rotating sensor,

The force of light pressure on a reflecting object is given by
F = 2P/c (17)

where P is the light power and ¢ is the velocity of light. The
strobe flash unit used produced a beam intensity of 1.2 x 10° 1m/m
at 1 m distance. The experiments were carried out at a distance of
approximately 1 ft, with a sensor arm area of 8 cmé, The force on
the arms is calculated to be about 10-2 dyn, or about 20 times the
calculated force due to the earth's gravitational gradient., Light pres-
sure as a noise problem is completely eliminated when an opaque

vacuum chamber is used.

The differential rotation of the sensor and chamber walls
creates turbulence in the residual air in the chamber, which results
in the generation of an appreciable amount of noise. This turbulence
noise source is eliminated in the design by operating the sensor in a

corotating vacuum chamber,
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D. PICKUP

It has been found that rotation of the wire leads on the capaci-
tive strain transducers through an electrostatic field can generate
electrical pickup. Electrostatic fields observed in our test setups
were found to be generated by static charges left on the teflon bumper
plates when the apparatus was handled.




The removal of the teflon plates and the use of electrostatic
3 shielding, twisted leads, and differential preamplifiers reduced the
noise level from electrostatic pickup well below levels produced by

other sources of noise.

When the sensor lead wires rotate through a diverging mag-
netic field, they generate induced currents which will depend to a
large extent on the geometry of both the wire loops and the magnetic
field.

The induced emf V from magnetic pickup in a wire loop of
area A rotating at a speed Q through a constant magnetic field B
perpendicular to the loop is given by

V=DBAQsinQt, (18)

This output is at the rotation rate, of course; however, if two loops
were rotating through an asymmetric field, a portion of this voltage
would be proportional to the gradient of the magnetic field and at
twice the rotation rate,

The residual flux level in our prototype magnetic bearing has
been measured as approximately 5 G at the position of the rotating
sensor. As a rough estimate, let us assume that the area of the loop
in the leads is 0.1 cm?Z and that the asymmetries will produce 2
outputs which are 1% of the 1Q outputs. At a rotation speed of
15 rps, this will give a coherent noise level of approximately 10-8v
(equivalent to = 0.3 E.U.).

Electromagnetic pickup from the drive fields of the motor re-
presented a potential noise source. However, experience with noise
tests on rotating sensors has shown that this is not a major problem.
With synchronous drive at high drive levels it is possible to see the
effects of the drive fields; when the drive voltages are decreased to
just that necessary to maintain synchronous rotation, however, the
noise level decreased to that seen under free rotation operation. In
any case, the use of the phase locked asynchronous drive is found to
eliminate electrical pickup noise from the drive motor.

E. THERMAL NOISE LIMITS

When all the above forms of noise are eliminated, the funda-
mental sensitivity is determined by the thermal noise limitation. In
practice, this limit can never be reached, but many systems can ap-

- proach it very closely. This is especially true of low frequency de-
vices, since the electronics available in this region has been highly
developed and will contribute only a few degrees of extra equivalent
noise temperature to the physical temperature of the sensor.
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Near thermal noise limited sensitivity has been demonstrated
repeatedly in the program for a number of the sensor-transducer-

electronics configurations,

The sensitivity calibration is accomplished

using dynamically generated gravitational gradient fields produced by a

pair of rotating 1 kg masses,

A torsional sensor was calibrated using

the low noise preamplifier of the HR-8 Lock-in Amplificr, and the noise

level measured for a 100 sec integration time was found to be equivalent

to a gravitational

radient threshold of 0.2 E. U,

limit is 0. 05 E. U. (see eq. (14)).

while the therrnal noise
In this case the thermal vibrations

in the sensor were contributing about one-fourth of the observed noise.

4 ESTIMATED ACHIEVABLE NOISE LEVEL

From the above discussion we can now tabulate the noise sources
and estimate the total residual noise in the system (see Table B-I).

TABLE B-1

Estimate of Noise Limited Threshold

Noise Type Caused by Amount Comments
Internal Mechanical | 2 w torsional input| 0.1 x 10-9sec-2 Section IV-A
Translational bal-| 0.3 x 10-9sec-2 Section IV-A
ancing
Eddy Current Sensor magnetic Negligible Sensor is
interaction nonmetallic
Electrical Static electrical Negligible Sensor iselec-
fields trically
shielded
Magnetic Pickup Magnetic interac- 0.3 x 10-9sec-2 Section IV-D
tion with wires
Acoustic Air turbulence Negligible Sensor is in
corotating
vacuum
chamber
Electronics Preamplifier 0.4x 10'9sec-2 Section III-B-
noise 2-a
Thermal Noise Temperature of 0.2x 10" sec-2 Section IV-E
sensor and
transducer
Total 1.3x 10 sec-z Sum (worst
case)
-2

rms




G. TESTING PROCEDURES

1. Static Balancing

In order to reject signals which are generated in interactions
between sensor asymmetries and vibrational noise inputs, the asym-
metry coefficients h, e, and € outlined in Section IV-A must be re-
duced by mechanical balancing of the sensor-bearing assembly. This
will be accomplished by introducing calibrated torsional and trans-
verse vibrational signals into the sensor head and adjusting the inertia,
center of mass, and bearing parameters of the sensor arms to pro-
duce a null output from the transducer. The sensor head will also be
dynamically balanced using commercial balancing practices.

Zs Calibration

For static calibration we will use a generator of dynamic grad-
ient fields. We have constructed and successfully operated such a
generator in prior experimental research on gravity sensors. Our
gravitational gradient field generator consists of a flat aluminum
cylinder 14 cm in diameter, with four holes which can be filled with
slugs of different density to create a rotating mass quadrupole mo-
ment (see Figure 18), The generator is operated at sensor rotational
frequency (15 Hz), Because of the bisymmetric mass distribution,
the dynamic gravitational gradient fields generated are at a frequency
of twice that of rotation. The dynamic field thus simulates the reson-
ant response of the sensor, which also responds at twice rotational
speed.

The sensor will be mounted inside its evacuated vacuum cham-
ber, the chamber will be suspended from the ceiling, and the calibra-
tor will be placed beneath or beside the chamber. An iron shield will
be used for acoustic and magnetic isolation. This has been found to be
adequate in our previous experiments with dynamic gravitational fields.,
Data can be taken with four different mass distributions varying from
0 to 1000 g with separation distances between sensor and calibrator
varying from 5 to 20 cm. Calibration procedure will therefore be
capable of accurately demonstrating the sensitivity and threshold of
the sensor.
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APPENDIX C

GRAVITY GRADIOMETER COMPUTER MODEL FOR
SIMULATED GRADIENT CONTOUR MAPPING

(Prepared by David Berman)
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Gravity Gradiometer Computer Model for Simulated Gradient Contour Mapping*

DAviD BERMAN
Hughes Research Laboratories, Mal*bu; Colifornia 90265
(Received 10 May 1967; and in final form, 23 June 1967)

Considerations for gravity gradiometer application have established the need for predicting gradiometer re-
sponse to mass distributions of particular interest. A digital computer program has been developed to simulate the
rotating gravitational mass sensor, and to map the gradient contours of the gravitational field created by an arbi-
trary mass distribution. This analysis demonstrates the interaction of the gradiometer with seond and higher
order gravitational gradients. The information about the mass distribution of an object was found to increase with

the g

-.ent order. Considered in this study is the “cruciform” mass sensor, now being developed by Hughes

Researrh Laboratories. This rotating gradiometer is theoretically capable of measuring the second, sixth, tenth, etc.,
order gradient. We are presently engaged in laboratory experiments which combine with these computer results
in the understanding of gradient-sensor interaction. This paper gives a basic introduction to gravitational tensors,
followed by a mathematical formulation of the gradiometer model. Computer results are included which demon-
strate the gravitational gradient contours associated with some selected mass distributions.

INTRODUCTION

HE gravitational field of an object can provide us

with knowledge of many properties of its mass dis-
tribution.!=? Although the gravitational potential itself is
not directly measureable, the gradients of the field are
measurable. The first order gradient of the gravitational
potential field is simply the gravitational force; higher
order gradients are com,licated tensors of high rank.

A gravitational gradient sensor measures directly the
various gradients of the gravitational potential and thus
enables reconstruction of the gravitational potential dis-
tribution. Preser.t research indicates that the measure-
ment of higher order gravitational gradients provides in-
creasingly more information about the mass distribution
of an object, and thus more accurate determination of the
gravitational field detail.

Future application considerations for gravity gradiome-
ters as well as laboratory demonstration have created a
requirement for predicting the response of a gradiometer to
gravitational fields of particular interest. For example,
geodetic applications require the prediction of gradiometer
response to the earth’s gravitational field. Similar require-
ments are presented in our laboratory investigations of
gradient_sensors. For these reasons, a general computer
program has been developed to map the contours of
gradiometer response for an arbitrary mass distribution.

In this paper we demonstrate the contour mapping of
gravitational gradients which are measurable with a gravi-
tational gradient sensor. We have constructed a digital

* This work was partially supported by the Air Force Cambridge
Research Laboratories, Contract No. AF 19(628)-6134 and the Air
Force Office of Scientific Research Contract No. AF 49(638)-1536.
The views do not necessarily reflect those of the Air Force.

LR, L. Forward, “Mass Detector,” Hughes Research Laboratories
Internal Report RL-59 (19 March 1962).

$R. L. Forward, ““Gravitational Mass Sensor,” Proc. 1963 Symp.
on Unconventional Inertial Sensors, Farmingdale, New York (18-19
November 1963), pp. 36-60.

1R, L. Forward, Bull. Am. Phys. Soc. 9, 711 (1964).
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computer model of the rotating cruciform gravitational
gradient sensor under development at the Hughes Re-
search Laboratories. The computer program can map the
gravitational gradient interaction for an arbitrary mass
distribution and an arbitrary gradiometer orientation.

THE GRAVITATIONAL POTENTIAL
AND ITS GRADIENTS

According to Newton’s law of gravitation, a mass M
characteristically sets up a field in the space around it,
which interacts with other masses. If a small test mass m
is placed at a distance R from the first mass, it is found that
the system has a potential energy given by

¢=—(GMm/R), (n

where G=6.67X10~" m?/kg sec?. Strictly speaking, the
above formula applies only to a spherically symmetric
mass, but the concept can be extended to more compli-
cated distributions of mass by simply adding the contribu-
tions of each part of the distribution.

The gravitational potential is not directly measurable
since the point of zero reference can be changed arbitr. rily.
Differences in potential energy can be measured by allow-
ing the masses to attract each other and measuring the
change in kinetic energy.

The first order gradient of the potential is simply the
gravitational force field. Since the inertial mass and the
gravitational mass are the same for all bodies, the gravi-
tational force field is equivalent to a gravitational accelera-
tion field.

1 1
gy=—Fy=——V¢
m m

= -[GM/(-"2+f+zz)’](x,y,z)
in Cartesian coordinates
=[—(GM/R?), 0,0] in spherical coordinates.

()
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This accelerating force tield can be detected by any force
or acceleration measuring device such as an accelerometer
or gravity meter, provided the center of mass of the sensing
device and the object being investigated are not moving
with respect to each other. The second order gradient of
the potential is the gravitational force gradient described
by the symmetric tensor

(0% 9% %)

dxdx dydr dzdr

¢ 1|d ¢ 0
ry=V.V,—=—|— . 3
m midxdy dydy 9J20y

¢ ¢ e

dxdz 0ydz 9z0z)

If we have a simple mass to measure, by proper orienta-
tion ‘of the sensor, the measured gravitational force
gradient tensor can be simplified to

L, 0 0
I‘.~,-= O Pu 0 , (4)
0 0 F“

which consists of the radial gravitational force gradient
T'=+2(GM/R?), (5)

and the trangential gravitational force gradient
I'y=—(GM/R. (6)

The gravitational force gradient is best known to us as
the tides on the earth due to the gravitational field of the
sun. Since the amplitude of the gravitational force due to
the sun varies as the inverse square of the distance from
the sun, and since the direction of the force vector varies
with angle, the gravitational force due to the sun varies
from point to point on the earth. If we look at these force
vectors from the viewpoint of the center of mass of the
earth, we se¢ that after subtracting out the center of mass
motion, we are left with a radial tension and tangential
compression. It is important to realize that the effects of
the slight angular convergence are of the same order of
magnitude as the radial gradient effects. This will always
be true and the angular effects must always be included
for a correct calculation of gradients.?

" There is essentially no limit to the number of higher
gravitational gradients that can be measured, provided
the sensor is close enough and the object under investiga-
tion is sufficiently dense that the interaction overcomes the
sensor noise. These higher order gradients are complicated
tensors of high rank, and sophisticated techniques and
sensors may be able to obtain a great deal of information
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from them. Basically, they have the form*
Tusen=1/m(d"¢/dx%dxt- - -9x"). ()

By measurement of the gravitational tensor compo-
nents, we can theoretically reconstruct the potential field
of an arbitrary mass distribution. However, the same po.
tential field can be produced by more than one mass dis.
tribution. Consider the well known puzzle “How to dis-
tinguish between two hollow shells, one of gold, the other
of silver, if their diameters and masses be alike and both
be painted?”” When there is radial symmetry, a gravita-
tional gradient sensor will determine only the mass and
net the distribution.

Once the potential field is known, it may be expressed
as a series of spherical harmonics. These h=rmonics then
determine the multipole moments of the potential distri-
bution. However, there is not a one to one correspondence
between these field moments and the moments of the mass
distribution (moment of inertia, for example). The field
moments (monopole, quadrupole, etc.) contain combina.
tions of mass moments, so that only the combinations are
determined, and not the mass moments themselves. Gra-
vitational measurements are capable of identifying the
total mass (zeroth moment) and center of mass (first
moment) and also components of all higher moments.
These distinguishable higher moments must contain a
ponspherically symmetric characteristic length.

By going to higher order gravitational moments, in-
creasingly more information can be obtained about the
detailed structure of the object. Although the higher order
moments of the mass distributions make an increasingly
smaller contribution to the total potential, they produce
a larger contribution to the higher order gradient. For
example, consider the gravitational pctential field of a
relatively simple mass quadrupole (two point masses M/2
separated by a distance 2a)

¢=GM/r(1+a%/r* cos¥), 8

where 8 and r are spherical coordinates. The first term is
the mass monopole moment of the distribution, and the
second term is the quadrupole moment. The expression for
the nt® order (radial) gradient of the potential is

ng/ar=GM (n!/rmt)
X[14+1/2(n4+1)(n+2)(a/r)? cos®6]. (9

The ratio of the quadrupole to monopole moment [from
Eq. (9)] is plotted in Fig. 1 as a function of the gradient.
order. For example, consider a sensor distance of five
times the mass separation, (a/r)*=0.01. In the second
order gradient (n=2), the quadrupole moment represents

¢R. L. Forward, “Rotating Gravitational and Inertial Sensors,”

presented at AIAA Unmanned Spacecraft Meeting, Los Angeles
(1-4 March 1965).
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only 6% of the total signal, If this 695 variation could not
be detected, the doublet mass distribution could not be
distinguished from a single point mass. However, in the
sixth order gradient (n=6), the quadrupole term is 28%,
of the amplitude of the monopole term. Thus, the higher
order gradients indicate the fine detail in the potential
distribution.

GRAVITATIONAL MEASUREMENT

The simplest way to measure gravity is to use an ac-
celerometer and measure the gravitational force (first
order gradient). A single accelerometer also responds to
linear accelerations induced by motion of the sensor. To
make a gradiometer to measure the second order gradient,
the outputs of a pair of accelerometers on the ends of a
rod could be interconnected so that the acceleration due to
the first order gradient or external forces is canceled out,
leaving only the differential or second order gradient forces.
Similarly, higher order gradients could be measured by
more complex arrangements using many accelerometers.

A more sophisticated technique, considered in this
paper, is that employed by dynamic (rotating) gradiome-
ters. In its simplest form, the dynamic technique consists
of mounting one or more low level accelerometers to a ro-
tating frame with their sensitive axes perpendicular to the
centrifugal force.> When this is done, the output of the
accelerometers will be found to contain dynamic compo-
nents at multiples of the rotation frequency which are
driven by the various gradients of the field. The physical
concept used is that forces are vectors (tensors of first
rank), the gradients of forces are tensors of second rank,
and higher order gradients are higher rank tensors. In
general, the components of a tensor of #** rank, when
examined in the rotating reference frame of a sensor, will
be found to have time-varying coefficients which are at »
times the rotational frequency of the sensor.* For example,
if a simple spring mass is rotated in a static gravitational
field, the gravitational force gradient of the field (second
rank gravitational tensor) will induce dynamic forces in
the sensor with a frequency which is twice the rotation
frequency of the sensor.t”

The basic idea behind the operation of these sensors is
an old one in electronics—the concept of chopping, This is
used extensively in dc amplifiers, where the low level dc
signal is chopped, transformed into an ac signal, and then
amplified and measured by phase sensitive detectors. In
the gravitational sensors, the chopping of the static gravi-

§ J. W. Diesel, ATAA ]. 2, 1189 (1964).

*R. L. Forward, C. C. Bell, J. R. Morris, J. M. Richardson, L. R.
Miller, and D. Berman, “Research on Gravitational Mass Sensors,”
Final Report, NASW-1035, Hughes Research Laboratories (13
Angust 1966).

7C. C. Bell, R. L. Forward, and J. R. Morris, “Mass Detection by
Means of Measuring Gravity Gradients,” presented at ATAA Second

Annuzl Meeting, San Francisco, Calif. (26~29 July 1965); also AIAA
Paper 65-403.
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F16. 1. Ratio of the (Iuadmpole to the monopole moments of the
gravitational potential field of a mass quadrupole.

tational field is accomplished by physically rotating the
sensor so that its response to the gravitational field varies
with time.*

The conversion of a static gravitational interaction into
a dynamic gravitational interaction occurs because the
rotation of the senscr creates a rotating reference system.
From the viewpoint of the sensor, the mass to be measured
is somehow whirling around the sensor, attracting it first
one way and then the other.

A practical device, employing the dynamic concept, is
the cruciform gradient sensor, under development by
HRL (Figs. 2, 3). This device consists of four integral
arms, each a spring mass system (equivalent accelerome-
ter). Gravitational gradients excite vibrational modes of
the entire integral structure. This is a large advance over
the early concept of coupling the outputs of individual
accelerometers which are excited independently. The cru-
ciform sensor is computer-simulated in’this paper to study
the gravitational field interaction.

Figure 2 is a model of the cruciform sensor. The ele-
mentary’ component is a simple spring mass rotating at
constant angular frequency, as described above. The
system consists of four equal masses M, each at the end of
a cantilever spring, rotating in the vicinity of one or more
masses m; (Fig. 2). Gravitational forces exist between
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H Equation (16) indicates the general nature of the inter-
. action of the gravitational gradient sensor and gravita-
' tional field, although it was derived for the special case
s|- oy ”"; z:-z» of 2 point mass. In general, the dynamic gradient sensor
oF (ot -,’,,.--"""' A measures a combmfa.tior.\ of components in the gradient of
by ' L the potential distribution. In the following section, the
2 3 1470 ARM 4 "'l"l"l:, hel exact sensor-field interaction is calculated, taking account
i ,"

T /"ii

L MASS (m,) y
(l" "* li-o’

$ X

F1c. 2. Model of a dynamic gravitational gradient sensor
rotating in the vicinity of a point mass.

each arm j of the sensor and each mass m; of magnitude
Fi;=GMm/R.2, j=1,2,34, (10)

where R;; is the distance between m; and arm j. The com-
ponent of this force which acts upon the cantilever spring
is the tangential portion (F;) evaluated for i=j=1 as
follows

Fy=$1(Ry sinyy/Ry), (11)

where R, is the distance to the center of the sensor. Sub-
stituting (10) into (11) yields

Fi= (GRoMm;/R\y) siny,. (12)
Asssuming constant angular frequency, @ of the sensor
Fy/M = (GRym;/R,p) sinft. (13)
Evaluating o
1/Ryt* = (Ro*+b2— 25 R, cosQt)—3, (14)

where b= sensor arm length.

If (14) is now expanded binomially, the higher power
sine and cosine terms may be replaced by their correspond-
ing multiple angle identities. All terms of like frequency
are then collected, and only the terms with the lowest
power of a/R are kept in each frequency. Equation (13)
becomes

Fi/M = — (Gmi/ R)[sinQt+(3/2) (b/ Ro)
Xsin2Q4 (15/8) (b/Ro)? sin3
+(35/16) (6/Ro)? sin4Qt+---].  (15)
Similar gxpressions may be obtained for the other three

arms. The gravitational excitation E of a single arm is of
the form [Eq. (15)]

E=3Z4,(8"¢/3r") sinnQ, (16)

where A is a constant of the sensor. Hence, the n* order
gradient excites a sensor arm at a frequency of # times the
rotational frequency.
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of this. The purpose of the analysis leading to Eq. (16) is
only to provide a preliminary understanding of the opera-
tion of dynamic gradient sensors.

The response of a gradient sensor depends on its orien
tation, and many components of the #** rank tensor can be
obtained by a series of sensor orientations. Ideally, the
potential field could be reconstructed from such measure-
ments. The sensor excitation described by Eq. (16) cor-
responds to the radial components of the #* rank tensor
because of the particular choice of sensor orientation.

Figure 3 shows the actual cruciform gravitational mass
sensor which was modeled in Fig. 2. This particular design
utilized four basic spring-mass building blocks, and is
capable of measuring the second, sixth, tenth, etc., order
gravitational tensors. Other designs, using different
numbers of arms, could be used to measure the tensors of
intermediate orders.

INTERACTION OF GRAVITATIONAL
FIELDS AND SENSORS

We next calculate the exact interaction of a rotating
gravitational mass sensor, with the gravitational field
created by an arbitrary mass distribution.

It is assumed that a mass distribution may be modeled
by a three dimensional array of point masses m,, each at
an assigned coordinate (x;,y;,2:). The sensor location is de-
scribed by coordinates (Xo,¥,Z0), which correspond to the
center of gravity of the sensor.

The derived expressions shall be sufficiently general to
accommodate any sensor orientation and thus shall yield
all possible combinations of tensor components. In general,

each of the four sensor arms is related to the coordinates.

of the center of gravity by the use of Euler angles. For an
arbitrary orientation of the sensor (Fig. 4), the coordinates

: Fic. 3. 12.7 cm diam cruciform gravitational mass
sensor under development at HRL.
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of the four sensor arms (X;,1",,Z,) are given by

X,;=X,+b(cos¢ cosy,— sing cosf siny,),
Y=Y +b(sing cosy,+cose cosd siny,),
Z;=Zo+b(sinf siny,),

and
j=1234. 17

In the above, 6 is the angle made by the sensor axis of
rotation with the z axis; ¢ is the angular position where the
sensor plane of rotation intersects the x-y plane. The angle
¥; describes the sensor rotation

¥i=q;
}j= 1) 2, 3’ 4’ (18)

¥i=+(j—-Dr/2,

where Q is the rotational frequency of the sensor, and & is

the arm length.

In order to determine the sensor excitation to an arbi-
trary mass distribution, we first need to calculate the force
on arm j of the sensor due to mass i. Actually, the tan-
gential component of this force (in the plane of rotation)
is required, since the dynamic sensor responds only in the
¢ direction (Fig. 4).

The force on arm j from mass i is expressed in vector
notation by

Fi=GM (mi/R.*)R; (19)
where

G= gravitational constant,
M= mass of sensor arm,
R,j= vector distance between-i and j (20)
= (X;—2)i+ (V;—3)i+(Z,—2)k,
and

1,j,k=unit vectors in the x,y, directions, respectively.

In vector form, we may easily express the required com-
ponent of J;;. The tangential direction of arm j is identical
to the radial direction of arm j+-1. Hence,

Fij=§ii tisy, (21)

where F,; is the sensor driving force and r;,, is a unit vector
describing the orientation of arm j+1

= (1/B)[(Xjr1— Xo)i
+ (V= Yo)j+(Zin—Zok]. (22)
We may thus expand F,; using Eq. (22)

Fij=(GM/b)(mi/R;)[(X;—x.) (X 11— X0)
+(¥Vi=y) (Y=Y +(Z;-2)(Z, 11— 2Z)]. (23)

GRADIOMETER COMPUTER MODEL

FiG. 4. Euler-angle coordinate system describing rotating’gradient
sensor for arbitrary position and orientation.

The total driving force on arm j resulting from all point
masses in the array (A" total) is

N
Fi=3 F;. (29)
i=l

The foregoing is general for any rotating gravitational
gradient sensor (i.e., any number of arms). The sensor
considered here has a particular vibrational mode which
corresponds to a2 combination of individual arm motions.
The gravity sensitive vibrational mode of the cruciform

sensor is formed as follows®

1.4
Fy=-3 (-1)F'F, (25)
2

This completes all the quations necessary for construct-
ing the sensor excitation due to any arbitrary array of
point masses, and for any three-dimensional position and
orientation of the sensor. At this point, it is worth while to
take a simple case as an illustration of the sensor-mass
interaction. In order to simplify numerical manipulation,
assume all distances are multiples of the arm length 5, and
all point masses are multiples of a value m,.

We now choose the special case of a single point mass at
the origin, and a sensor rotating in the x-z plane with
center on the positive £ axis. The situation is that shown
in Fig. 2 (for Z=4). Hence, the following values are asso-
ciated with this example:

N=1 ¢=0
=y =z,=0 O=x/2
Yo=Vo=0
Zy=4 (4Xarm length).
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MOMMAL IZED AMPLITUDE
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F15. 3. Gravitational excitations of the individual arms of a
gradient sensor near a point mass.

We may consider this example as two dimensional, since
the plane in which the sensor rotates also contains the
Source mass.

Of interest first are the forces on the individual sensor
arms as a function of sensor rotation y. These are shown in
Fig. 5 [from Eq. (23), using (17) and (20)). The calcula-
tions were facilitated by the digital computer, the pro-
gramming of which is discussed below. In Fig. 5, it should
be noted that all four arm excitations are identical, except
for a phase shift of x/2. This is to be expected since each
sensor arm follows exactly the path of the one preceding,
at a separation of 90° In Fig. 5 as well as the following
figures magnitude has been normalized, in that the con-
stants G, M, b, etc., have been ignored.

Finally, we show the gravitational mode excitation
[Eq. (25)] in Fig. 6. This function appears to a first order
to be a sinusoid of period 7. (The period of rotation of the
sensor itself is 2r.) Such information about the various
frequency components of the sensor gravitational excita-
tion is the underlying basis for determining the gradients
of the gravitational field, as discussed above.
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F16. 6. Gravity-mode excitation of a cruciform gravitational
gradient sensor near a point mass.

We may obtain the amplitude of each frequency com-
ponent n of an arbitrary signal by use of the Fourier
formulas

l 1 4
Upy=— /. F, cosny1dy
TJo

1 (26)
v.s—f F, sinny,dy.
°

T

These give the coefficients of the cosine and sine terms of
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Fic, 7. Digital computer flow chart for the simulation of the gravi-
tational field and dynamic sensor interaction.
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GRADIOMETER COMPUTER MODEL 1439

the n' frequency component. The amplitude of the exci- o
tation (E,) is therefore
Eu= (u2+u2)L (27)
When Fourier analysis was performed on the function ! - _

in Fig. 6 (with the aid of the digital computer) it was

found that there were frequency compcnents only at

(2+44n) times the frequency of rotation (2=0, 1, 2, 3) etc.

This is a property of the four-arm cruciform gravitational ot
gradient sensor. Although Fig. 3 is the result of a very
simple case (point mass), the results are general for more
complex mass distributions. These findings are in agree-
ment with elementary sensor theory.*

So far we have considered that the sensor is at a fixed
location in the gravitational field of a mass distribution.
Suppose now that the sensor moves through the field, de-
scribing a circle around the mass distribution. A plot of
sensor excitation as a function of angular position is called
a gradient profile of the gravitational field. We may obtain
gradient profiles of various orders by using Fourier
analysis to select the corresponding frequency component. o
In other words, we identify the n* order gradient as the
amplitude of the term at n-times rotational frequency. In
addition, by considering various sensor orieatations (6,¢),
we may obtain gradient profiles for many components of a = T TS T ST

high-order gradient (gravitational tensor). 0- 2 4 & 8 0 12
ORDER OF GRADIENT

RELATIVE AMPLITUDE
&
'I

%

r

COMPUTER PROGRAM

A digital computer program was constructed which is
capable of mapping the contours of the gravitational

F16. 9. Relative amplitude of the gravitational gradient signal as a
function of the gradient order; cross plot of Fig. 8.

ORDER OF
GRADIENT

F1c. 8. Spatial distribution of the gravitational gradient signal prn-

duced by four equal, symmetric point masses. Masses are each one Fic. 10. Gradient profile produced by four unequal masses, Sensor
arm length from the origin, and sensor is three arm lengths from distance is five arm lengths. Higher order gradients are magnified as
origin. Higher-order gradient profiles are magnified by several orders in Fig. 8.
of magnitude.

C-7




1440 DAVID BERMAN

10 T T T T T
- -
[ ] =
g | -
X} o VARIDUS ANGULAR =
] = LOCATIONS
i
04} -
H
:
02 -
L 1 L 1 i
°o 4 [ 12

DISTANCE FROM SQUARCE

Fic. 11. Gravitational gradient signal variation with distance and
angular position of sensor. Closeness of curves at increasing distances
indicates lack of resolution in the gradient profile. (Second order.)

gradient interaction for an arbitrary mass distribution and
an arbitrary sensor configuration. The computer program
evaluates Eqs. (17) through (27) for any given mass dis-
tribution, sensor coordinate, and sensor orientation. It
also automatically advances the sensor angular coordinate
while maintaining constant radial coordinate. It thus cal-
culates directly a gradient profile of any desired order
(specified in the input).

Figure 7 is a detailed logic flow diagram, demonstrating
the gravity gradiometer computer model, and the calcula-
tion of gradient contours. Although this particular pro-
gram simulates a cruciform gradient sensor, a minor
modification allows simulation of any desired sensor
configuration.

Results have been obtained for several selected mass
distributions. These are presented in the next section.

COMPUTER RESULTS: GRADIENT PROFILES

Gradient profiles which have been generated by the
computer are presented. We have chosen several particular
examples of mass distributions which dem snstrate the im-
portant properties of the gravitational field and sensor
interaction,

Gradient profiles corresponding to a mass distribution
consisting of four symmetrically arranged equal masses
are shown in Fig. 8. Each mass is at a distance of 1 from the
origin and the sensor distance is 3 arm lengths. All the fre-

quency components are shown, up to 18 times rotation.
The higher frequency components correspond to higher
order gradients of the gravitational field. The profiles in
Fig. 8 correspond tq a sensor orientation sucu that the
plane of rotation passes through the origin.

We see that although the double frequency component
gives a slight indication of the details in the mass distribu-
tion, the higher components give more and more resolution.
This property of the higher order gradients was discussed
above. In Fig. 8 the higher order patterns have been mag-
nified many times. Figure 9 shows the relative magnitudes
(maximum and minimum) as a function of frequency com-
ponent. Because the higher order gradients become so re-
duced in magnitude, only the second 'rder gradient will be
of practical interest for geodesy application. It is expected
that higher order gradients will be masked by instrument
noise. In the laboratory, however, noise may be controlled
to a much greater extent. We therefore expect, in our ex-
perimental investigation of gravitational sensors, to con-
duct the measurement of the higher order gradient
interaction.

Figure 10 shows the gradient profile results for a different
distribution; the two vertical masses are twice the size of
the two horizontal masses. The sensor distance is 4.5 arm
lengths. We notice here that the double-frequency com-
ponent gives no indication that there are four separate
masses. The sixth order component gives good resolution,
and the tenth even better. Here again, the scales have been
magnified successively as in Fig. 8.

As the distance from the mass distribution becomes
larger, the amplitude of the tensor components diminishes.
This effect is shown in Fig. 11 (for the mass distribution

,",/‘3 N \\
I'I/%‘:‘%’ff #mgﬁﬁ“ g“

FIXED SENSOR
ORIENTATION

Fic. 12, Comlpnrison of gradient profiles measured by sensors of
fized and variable orientations (point mass). Cosine-squared variation
corresponds to second order gradient.
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used for Fig. 10). Resolution of the gradient profile also
diminishes as a function of the distance from the mass
distribution, as can be observed by the lack of separation
of the curves at increasing distance (Fig. 11). Lack of
separation indicates that the amplitude is almost constant
with angular position about the mass distribution, vielding
only the monopole moment of the gravitational potential
distribution.

Finally, we demonstrate the effect of sensor orientation
on response. In Fig. 12 we have considered a point mass
which is circled by a sensor whose axis of rotation remains
pointed in a fixed direction, thus varying its orientation

C-9

with respect to the point mass. Hence, the sensor orienta-
tion with respect to the mass continually changes as the
sensor moves around the mass. In one extreme, the sensor
experiences maximum interaction with the gravitational
field, while the other extreme corresponds to a null posi-
tion. The resulting figure eight was found to be a cosine-
squared curve, and is indicative of second-order gradient
variation.

All of the foregoing analysis is quite general, and may
be used to study the interaction of sensors and thke gravi-
tational fields produced by particular objects of interest in
future gradiometer applications.
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DETERMINATION OF THE EARTH'S GRAVITATIONAL
" CONSTANT (GM)
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SUMMARY

The purpose of this study is to discover whether it is feasible
to obtain a highly accurate determination of the earth's gravitational
constant (GM) from measurements of the gravitational force and the
gradient of the gravitational force. It has been found to be theoreti-
cally possible to determine GM for the real earth with its irregular
geometry by means of Jeffreys' method for calculating the potential
outside the earth. This technique involves using a surface integral
over the earth's physical surface. If the observed forces or gradients
do not agree with those calculated by Jeffreys' method, the geometri-
cal shape of the earth's surface then may be modified by changing the
assumed mean value for the earth's radius so that the observed and
calculated gradients are brought into agreement. However, further
study showed that in practice the contribution to the surface integral
of the gravitational force gradient comes almost entirely from the
immediate vicinity of the measurement station, and that real measure-
ments give information of predominantly local significance and say
little about the dimensions of the earth as a whole. It is concluded
that an accurate determination of GM from gravitational measurements
made on the earth's surface is not feasible.




I. INTRODUCTION

The purpose of this study is to determine the feasibility of
obtaining the earth's gravitational constant (GM) from gravity and
gravity gradient measurements taken on the earth.

Spherical Earth

A very simple relation exists between gravity and its gra-
dient on the surface of a sphere which would make it possible to
determine GM and the radius of the sphere by measuring these
quantities.

For a spherical, nonrotating earth with radially symmetric
density distribution, we can write the earth's gravitational field as

g=GM/r% (1)
and the vertical gradient of the gravitational field as

= 3o
.. = 3= 2GM/r 2g/r . (2)

On the earth's surface we have
— 2- -
(), = GM/a%; (rrr)a = - 2g/a (3)

where a is the earth's radius.

Hence, if both (g)a and (I"rr) can be measured accurately,
it is possible to determine a from th& relation

a= - 25 | " (4)
rr

We can then substitute in the expression
2
g = GM/a (5)

to determine a value for the earth's gravitational constant (GM).




Irregular Earth

Although the relation between gravity and its gradient on the
surface of a sphere is very simple and would allow GM to be deter-
mined, the earth is not spherical, but has a highly irregular and
relatively unknown shape. Since the gravitational gradients are
related to the local curvature of the geoid,1 a theory based on a
simple geometric shape such as a sphere or ellipsoid is clearly
not adequate.

The question then is whether measurements of gravity and its
gradient can be combined to give significant information about the
dimensions of the real earth which in turn can be used to determine
GM. Such calculations must be accurate to 8ne part in 102 to confirm
present determinations and tc one part in 10° to provide a significant
improvement.

Many attempts have been made in the past to determine the
earth's external gravity field everywhere in space from measurements
on its physical surface. The methods used in our investigatior: are
those of the '"new geodesy, " deriving from a paper by Jeffreys.

Jeffreys2 theory for calculating the potential outside the earth
involves using a surface integral over the earth's physical surface.
This method is theoretically exact and involves only the valies of
observable quantities of the earth's surface. Therefore, it can be
applied to an irregular body such as the earth to calculate external
potential forces, or force gradients, provided the geometrical shape
of the surface is known. If the observed gradients do not agree with
those calculated by Jeffreys' method within the accuracy expected,
the geometrical shape of the earth's surface may be modified until
agreement is obtained. If the entire earth contributes nioderately
uniformly to the surface integral, a scale factor change in the form
of a modified value of the earth's radius would be effective in bring-
ing observed and calculated gradients into agreement. If, however,
the surface integral comes almost entirely from the immediate
vicinity of the station, the method gives information of purely local
significance ard says nothing about the dimensions of the earth as a
whole.




! II. DERIVATION OF JEFFREYS' FORMULA

In his paper‘2 Jeffreys uses Green's theorem to derive an exact
» expression for the Newtonian gravitational potential outside the earth's
surface, in terms of a surface integral over the earth's physical sur-
face (or any surface which completely encloses the earth) and a
relatively unimportant volume integral throughout the earth.

The advantage of this approach is that it is exact. It is then
easy to apply any approximations made in the practical application of
the theecry. A summary of Jeffreys' derivation is given below.

Let U, be the Newtonian potential due to a mass within the
earth's physigal surface at a point P external to that surface. R is
the distance from the mass to P (see Fig. D-1).

Fig. D-1.

2

Following Jeffreys, © we may apply Green's theoremn

ff(u -gln -V -g%) dS:ff(Uvzv-vvzm ar (6)

with the volume integral being through any region and the surface integral
over the same region. This is true for any functions of position U and
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V. In this case we let U represent the Newtonian potential and V = i/R.
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The region considered by Jeffreys is bounded internally by a small
sphere about P and by the physicak surface of the earth. In this case
the right hand side is zero since V®V =V®U = 0 in this region.

On the left hand side, as the sphere around P contracts, we
find that

fo dS/R% = an U (7)

leaving

4n U =fﬂg—g Cx - Uaa—n (1/R)bds . (8)

We actually measure things on the earth with a rotating coordinate sys-
tem and include the centripetal force in our measurements. We can
fix this up by defining a geopotential ¥ = U + 1/2 2r2 sin 0 where

w = angular velocity of the earth and r, 0 are spherical polar coordi-
nates.

Substituting U = ¥ - 1/2 mzrzsin2 @ into (8) and utilizing the
fact that

ff% mzrzsin2 0 %{ (1/R) - 6_?1 (—é— mzrzsin2 O) ﬁl ds =ﬂ‘/lR . sz dr ,
(9

we can show that

2
4n U :fﬂ.g_%’ .%{ - q,% (1/R)$ ds +M‘%- dr . (10)

If we compare the volume integral correction with the potential due to
a uniform density earth

8= ff ERE d(Vol)

= ) T




we see this term is equivalent to a change in the earth's density of
1/4w (ZwZ/G), or about 1/232 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>